請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44094
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 韋文誠 | |
dc.contributor.author | Shih-Yueh Chuang | en |
dc.contributor.author | 莊士岳 | zh_TW |
dc.date.accessioned | 2021-06-15T02:39:40Z | - |
dc.date.available | 2012-08-20 | |
dc.date.copyright | 2009-08-20 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-12 | |
dc.identifier.citation | [1] N. M. Sammes, G. A. Tompsett, H. Nafe and F. Aldinger, “Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity”, J. Eur. Ceram. Soc., [19] 1801-1826 (1999)
[2] P. Shuk, H. D. Wiemhdferb, U. Guth, W. Gijpeld, M. Greenblatt, “Oxide ion conducting solid electrolytes based on Bi2O3”, Solid State Ionics, 89 179-196(1996) [3] K. Z. Fung and A. V. Virkar, “Phase Stability, Phase Transformation Kinetics, and Conductivity of Y2O3—Bi2O3 Solid Electrolytes Containing Aliovalent Dopants”, J. Am. Ceram. Soc., 74 [8] 1970-1980 (2005) [4] A. Castro, E. Aguado, J. M. Rojo, P. Herrero, R. Enjalbert, and J. Galy, “The New Oxygen-Deficient Fluorite Bi3NbO7: Synthesis, Electrical Behavior and Structural Approach”, Materials Research Bulletin, 33 [1] 31-41 1998 [5] E. Pernot, M. Anne, M. Bacmann, P. Strobe1, “Structure and conductivity of Cu and Ni-substituted Bi4V2O11 compounds”, Solid State Ionics, 70 71 259-263(1994) [6] I. Bloom, M.C. Hash, J.P. Zebrowski, K.M. Myles and M. Krumpelt, “Oxide-ion conductivity of bismuth aluminates”, Solid State Ionics, 53-56 739-747 (1992) [7] J. Schreuer, M. Burianek, M. Muhlberg, B. Winkler, D. J Wilson and H. Schneider, “Crystal growth and elastic properties of orthorhombic Bi2Ga4O9”, J. Phys.: Condens. Matter, 18 10977–10988 (2006) [8] G. Blasse and O. B. Ho, “On The Luminescence of Bismuth Aluminate (Bi2Al4O9)”, J. Lumine., 21 165-168 (1980) [9] V.V. Volkov and A.V. Egorysheva, “Photoluminescence in Fast-Response Bi2A1409 and Bi2Ga4O9 Oxide Scintillators”, Optical Mater., 5 273-277 (1996) [10] L. L. Torre, A. aFriedrich, E. A. Arellano, B. Winkler, D. J. Wilson, L. Bayarjargal, M. Hanfland, M. Burianek, and M. Muhlberg, H. Schneider, “High-Pressure Behavior of Theternary Bismuth Oxides Bi2Al4O9, Bi2Ga4O9 and Bi2Mn4O10”, J. Solid State Chem., 182 767–777 (2009) [11] S. Larose, A. S. Akbar, “Synthesis and electrical properties of dense Bi2Al4O9”, J. Solid State Electrochem, 10: 488–498(2006) [12] S. Zha, J.i Cheng, Y. Liu, X. Liu, G. Meng, “ Electrical Properties of Pure and Sr-doped Bi2Al4O9 Ceramics”, Solid State Ionics 156 197– 200 (2003) [13] H. A. Harwig and A. G. Gerards, “The Polymorphism of Bismuth Sesquioxide”, Thermochim. Acta, 28 121-131 (1979) [14] V.V. Volkov, A.V. Egorysheva, “Photoluminescence in Fast-response Bi2A14O9 and Bi2Ga4O9, Oxide Scintillators”, Optical Materials, 5 273-277 (1996) [15] J. Schreuer, M. Burianek, M. Muhlberg, B. Winkler, D. J Wilson and H. Schneider, “Crystal Growth and Elastic Properties of Orthorhombic Bi2Ga4O9”, J. Phys.: Condens. Matter 18 10977–10988 (2006) [16] E. Pernot, M. Anne, M. Bacmann, P. Strobe1, “Structure and Conductivity of Cu and Ni-Substituted Bi4V2O11 Compounds”, Solid State Ionics, 70 71 259-263(1994) [17] L. Torre, A. Friedrich, E. Arellano, B. Winkler, D. Wilson, L. Bayarjargal, M. Hanfland, M. Burianek, M. Burianek, H. Schneider, “High-pressure behavior of the ternary bismuth oxides Bi2Al4O9, Bi2Ga4O9 and Bi2Mn4O10”, J. Solid State Chem.182 767–777 (2009) [18] E. I. Speranskaya, V. M. Skorikov, G. M. Safronov, and E. N. Gaidukov, Izv. Akad. Nauk SSSR, Neorg. Mater., 6 [7] 1364-1365 (1970) [19] E. M. Levin and R. S. Roth, J. Res. Natl. Bur. Stand., Sect. A, 68 [2] 197-206 (1964) [20] Levine, Ira N. (2001). Physical Chemistry (5th Edition ed.). Boston: McGraw-Hill. p. 955 [21] R. G. Horn, “Surface Forces and Their Action in Ceramic Materials”, J. Am. Ceram. Soc., 73 [5] 1117-1135 (1990) [22] W. C. J. Wei, lecture notes “Colloid process”, NTU, Taiwan 2008 [23] L. Bergstrom, Christopher H, Schilling, and Ilhan A. Aksy, “Consolidation Behavior of Flocculated Alumina Suspensuin”, J. Am. Ceram. Soc., 75 [12] 3305-14 (1992) [24] A. Degen and M. Kosec, “Influence of pH and Ionic Impurities on He Absorption of Polyacrylic Dispersant onto a Zinc Oxide Surface, “J. Am. Ceram. Soc., 86 [12] 2001-10 (2003). [25] Y. W. Leong, P. J. Scales, T. W. Healy, and D. V. Boger, “Interparticle Forces Arising from Adsorbed Polyelectrolytes in Colloidal Suspensions”, Colloidal and Surfaces., 95, 43-52 (1995) [26] http://www.malvern.com/LabEng/technology/zeta_potential/zeta_potential_LDE.htm [27] J. S. Reed, “Principles of Ceramics Processing”, Second Edition, John Wiley & Sons, 1995 [28] C. H. Meng, “Thermal Effect on Zeta Potential of Pure Zirconia in Aqueous Solution,” The Institute of the Materials Science and Engineering, Taipei, Taiwan (2005) [29] L.H. Luo, A. I. Y. Tok, F. Y. C. Boey, “Aqueous Tape Casting of 10 mol%-Gd2O3- Doped CeO2 Nano-Particles”, Mater. Sci. Eng., A 429 266–271 (2006) [30] Lamb, H., Hydrodynamics (6th edition ed.). Cambridge University Press. (1994), ISBN 9780521458689 [31] K. Prabhakaran, C. Pavithran, “Cardanol: A New Dispersant for Alumina in Toluene”, J. Am. Ceram. Soc., 83 [6] 1533–35 (2000) [32] M. T. Weng, “Research on Processing And Mechanical Properties of Al2O3/3Y-TZP”, The Institute of the Materials Science and Engineering, Taipei, Taiwan (2006) [33] S. M. Olhero, I. Ganesh, P. M. C. Torres, F. J. Alves, J. M. F. Ferreiraw, “Aqueous Colloidal Processing of ZTA Composites”, J. Am. Ceram. Soc., 92 [1] 9–16 (2009) [34] M. T. Weng, “Research on processing ang mechanical properties of Al2O3/3Y-TZP”, The Institute of the Materials Science and Engineering, Taipei, Taiwan (2006) [35] S. M. Olhero, I. Ganesh, P. M. C. Torres, F. J. Alves, J. M. F. Ferreiraw, “Aqueous Colloidal Processing of ZTA Composites”, J. Am. Ceram. Soc., 92 [1] 9–16 (2009) [36] H. Schneider, J. Schreuer, B. Hildmann, “Structure and Properties of Mullite-A Review”, J. Eur. Ceram. Soc. 28 329–344 (2008) [37] K.S. Mazdiyasni, L.M. Brown, “Synthesis and Mechanical Properties of Stoichiometric Aluminum Silicate (Mullite)”, J. Am. Ceram. Soc. 55 (12) 548–552. (1972) [38] B.L. Metcalfe, J.H. Sant, “Synthesis, Microstructure and Physical Properties of High Purity Mullite”, Trans. J. Br. Ceram. Soc. 74 (7) 193–201 (1975) [39] T.I. Ma, K.S. Mazdiyasni, “Mechanical Properties of Mullite”, J. Am. Ceram. Soc. 66 (11) 699–703 (1983) [40] Y. Y. Chen, “Formation of Mullite Thin Film by Sol-Gel Process”, The Institute of the Materials Science and Engineering, Taipei, Taiwan (2001) [41] K. Okada, Y. Hoshi, N. Otsuka, “Formation Reaction of Mullite from SiO2-Al2O3 Xerogels”, J. Mat. Sci. Lett. 5, 1315-1318 (1986) [42] M. Bartsch, B. Saruhan, M. Schmucker, H. Schneider,“ Novel Low-Temperature Processing Route of Dense Mullite Ceramics by Reaction Sintering of Amorphous SiO2-Coated γ-Al2O3 Particle Nanocomposites”, J. Am. Ceram. Soc., 82 [6] 1388–92 (1999) [43] M. D. Sacks, H.W. Lee, J.A. Pask, A Review of Powder Preparation Methods and Densification Procedures for Fabricating High Density Mullite, in: S. Somiya, R.F. Davies, J.A. Pask (Eds.), Mullite and Mullite Matrix Composites, Vol. 6, Ceramic Transactions, J. Am. Ceram. Soc., Westerville, OH, USA, pp. 167–207, 1990 [44] I. Abrahams, A. J. Bush, G. E. Hawkes, T. Nunes, “Structure and Oxide Ion Conductivity Mechanism in Bi2Al4O9 by Combined X-Ray and High-Resolution Neutron Powder Diffraction and 27Al Solid State NMR”, J. Solid State Chem. 147, 631-636 (1999) [45] Chen and X. H. Wang, “Sintering Dense Nanocrystalline Ceramics without Final-Stage Grain Growth,” Nature (London), 404, 168–71 (2000) [46] Y. Lee and Y. W. Kim, “Fabrication of Dense Nanostructured Silicon Carbide Ceramics through Two-Step Sintering”, J. Am. Ceram. Soc., 86 [10] 1803–805 (2003) [47] M. Bartsch, B. Saruhan, M. Schmucker, and H. Schneider, “Novel Low- Temperature Processing Route of Dense Mullite Ceramics by Reaction Sintering of Amorphous SiO2-Coated γ-Al2O3 Particle Nanocomposites”, J. Am. Ceram. Soc., 82 [6] 1388–92 (1999) [48] D. M. Sims, A. Bose and R. M. German, “Reactive Sintering of Nickel Aluminide”, Department of Materials Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590 [49] B. h. Rabin, A. Bose and R. M. German, “Processing Effects on Densification in Reactive Sintering of Nickel-Aluminum Powder Mixtures”, Department of Materials Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590 [50] L.B. Kong, T.S. Zhang, J. Ma, F. Boey , R.F. Zhang, “ Mullite Phase Formation in Oxide Mixtures in The Presence of Y2O3, La2O3 and CeO2”, J. Alloys and Compounds, 372, 290–299 (2004) [51] M. T. Weng, “Research on processing and mechanical properties of Al2O3/3Y-TZP”, The Institute of the Materials Science and Engineering, Taipei, Taiwan (2006) [52] C. H. Weng. “Processing and Property Investigations of Nb-Doped Bismuth Oxide”, The Institute of the Materials Science and Engineering, Taipei, Taiwan (2009) [53] P. Shuk, H. D. Wiemhdferb, U. Guth, W. Gijpeld, M. Greenblatt, “Oxide ion conducting solid electrolytes based on Bi2O3”, Solid State Ionics, 89 179-196(1996) [54] A. Trovarelli, F. Zamar, J. Llorca, C. Leitenburg, G. Dolcetti, and J. T. Kiss, “Nanophase Fluorite-Structured CeO2–ZrO2 Catalysts Prepared by High-Energy Mechanical Milling”, J. CATALYSIS 169, 490–502 (1997) [55] R. Arpe and H. Mueller-Buschbaum, J. Inorg. Nucl. Chem., 39 233 (1977) [56] A. A. Belik, T. Wuernisha, T. Kamiyama, K. Mori, M. Maie, T. Nagai, Y. Matsui, and E. T. Muromachi, “High-Pressure Synthesis, Crystal Structure, and Properties of Perovskite-like BiAlO3 and Pyroxene-like BiGaO3”, Chem. Mater., 18 133-139 (2006) [57] M. Bartsch, B. Saruhan, M. Schmuker, and H. Schneider, „Novel Low temperature Processing Route of Dense Mullite Ceramic by Reaction Sintering of Amorphous SiO2-Coated γ-Al2O3 Particles Nanocomposites”, J. Am. Ceram. Soc., 82, 1388-92 (1999) [58] B. Y. Yu, “Study on the Formation Mechanism of Tabular Al2O3 and Prismatic Mullite Formation on Alumina Substrate”, The Institute of the Materials Science and Engineering, Taipei, Taiwan (2007) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44094 | - |
dc.description.abstract | 具有莫來石結構的鋁酸鉍(Bi2Al4O9)是一種可用於固態氧化物燃料電池電解質的可能材料。而利用固態反應法或液相反應燒結法,有機會可以得到緻密且純相之鉍鋁莫來石。在本研究中,深入探討包括氧化鉍與氧化鋁的膠粒特性、氧化鉍與氧化鋁混合物的反應與燒結行為、以及不同之合成樣品的導電性質。在相變化方面,利用DTA和XRD之分析結果得知,氧化鋁在低於750oC即會固熔於氧化鉍中,形成γ’相(Bi24Al2O39)。而γ’相會在790oC以上的溫度分解成β’相(Bi48Al2O75)與鉍鋁莫來石,最後β’相會與殘留氧化鋁反應成鉍鋁莫來石。從SEM的觀察,我們可發現氧化鋁溶解於氧化鉍的證據,以及鉍鋁莫來石在氧化鋁與富鉍相之介面生成之行為。接著,我們利用六種不同的燒結製程試圖得到緻密的鉍鋁莫來石。其中反應燒結(S64)可以得到高於90%理論密度之緻密度。最後,透過添加5-30莫耳比例之氧化鈣或氧化鍶來取代鉍鋁莫來石結構中之鉍的位置,以期得到較高之導電度。分析部份,包括生成之晶相,燒結密度以及導電度都將於本研究之中報導。但其導電特性仍需更多研究努力,由提高燒結密度來改善其性質。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:39:40Z (GMT). No. of bitstreams: 1 ntu-98-R96527043-1.pdf: 14481110 bytes, checksum: dc3eafc8cb87ed05b8a4e24ef5fc7b59 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 摘要 I
Abstract V Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2-1 Characteristics of Bi2O2 and Bi2Al4O9 Mullite 4 2-1-1 Crystalline Structure of Bi2Al4O9 4 2-1-2 Electric conductivity of Bi2O3 and Bi-base oxide 5 2-1-3 Bi2O3-Al2O3 Binary phase diagram 7 2-2 Ceramic Colloid Process 8 2-2-1 Surface Potential of Colloid 8 2-2-2 Colloidal Sedimentation 10 2-3 Sintering of Mullite 11 2-3-1 Two-step Sintering 13 2-3-2 Reactive Sintering 13 Chapter 3 Experimental Procedure 34 3-1 Experimental Scheme 34 3-2 Materials 35 3-3 Processing of Bi2O3-Al2O3 Mixtures 35 3-3-1 Pearl Milling 35 3-3-2 Preparation of Bi2O3 and Al2O3 Mixture Slurries 36 3-3-3 Pressure Casting 36 3-3-4 Die Pressing 37 3-3-5 Fabrication of Bi2Al4O9 37 3-4 Sintering Procedures 38 3-5 Characterization 39 3-5-1 Zeta Potential Measurement 39 3-5-2 Particle Size Measurement 39 3-5-3 DTA Test 40 3-5-4 TMA Test 40 3-5-5 X-Ray Diffractometric (XRD) Analysis 40 3-5-6 Density Measurement 41 3-5-7 Microstructure Observation 41 3-5-8 Electric Conductivity Measurement 42 Chapter 4 Results and Discussion 45 4-1 Colloid Processing of Bi2O3-Al2O3 Mixture 45 4-2 Thermal Treatment for Bi-Al Mullite 53 4-2-1 Phase and Homogeneity Tests 53 4-2-2 Phase Transformation of Al2O3-Bi2O3 Composition 55 4-2-3 Synthesis of Bi2Al4O9 Powder 56 4-3 Sintering of Bi2Al4O9 71 4-3-1 S1 Process 71 4-3-2 S2 Process 72 4-3-3 S3 Process (two-stage sintering) 72 4-3-4 S4 Process 73 4-3-5 S5 Process (Liquid Phase Sintering) 73 4-3-6 S6 Process (Reactive Sintering) 74 4-4 Ca-doped Bi-Al Mullite 100 4-5 Electric Conductivities 106 4-5-1 Electric Conductivity of Bi2Al4O9 106 4-5-2 Electric Conductivity of Ca- and Sr-doped Bi-Al Mullite 107 Chapter 5 Discussion 111 5-1 Phase Equilibrium of Al2O3-Bi2O3 below 820oC 111 5-2 Transformation Mechanism of Bi2Al4O9 in Solid State 112 5-3 Transformation of Bi2Al4O9 above 820oC 113 Chapter 6 Conclusions 129 Chapter 7 Future Work 132 Reference 133 | |
dc.language.iso | en | |
dc.title | 鉍鋁系列莫來石之合成與電性之研究 | zh_TW |
dc.title | Synthesis and Electrical Properties of Bi2Al4O9 and
Bi2-xCaxAl4O9-δ | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭俞麟,虞邦英 | |
dc.subject.keyword | 鉍鋁莫來石,莫來石膠粒製程,固態氧化物燃料電池,電解質, | zh_TW |
dc.subject.keyword | Bi2O3,Al2O3,mullite,colloid processing,reactive sintering, electrolyte,electric conductivity,fuel cell, | en |
dc.relation.page | 140 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-12 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 14.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。