Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44092
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻(Tai-Horng Young)
dc.contributor.authorChia-Chi Hoen
dc.contributor.author何家齊zh_TW
dc.date.accessioned2021-06-15T02:39:34Z-
dc.date.available2011-08-18
dc.date.copyright2009-08-18
dc.date.issued2009
dc.date.submitted2009-08-12
dc.identifier.citation1.Anita M., Ranieri C., and Rodolfo Q. et al. Clonal mesenchymal progenitors form human bone marrow differentiate in vitro according to a hierarchical model. Journal of cell science. 2000; 113: 1161-1166.
2.Alan D.M., Lisa M.G., and Matthew P.A. et al. Chondrogenic differentiation of human bone marrow stem cells in transwell cultures: generation of scaffold-free cartilage. Stem cells. 2007; 25: 2786-2796.
3.Aaron R.K. and Ciombor D.M. Acceleration of experimental endochondral ossofocation by biophysical stimulation of the progenitor cell pool. J Orthop. Res. 1996; 14: 582-589.
4.Altman G.H, Horan R.L., Martin I., Farhadi J., Stark P.R.H., Volloch V., Richmond J.C. and Kaplan D.L. Cell differentiation by mechanical stress. The FASEB journal. published Dec 28, 2001.
5.Ali F., Galen B.S., and Rebecca Z. et al. Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts. Biomaterials. 2004; 25: 2075-2079.
6.Aparna S., and Sundararajan V.M. Characterization of chitosan- polycaprolactone blends for tissue engineering applications. Biomaterials. 2005; 26: 5500-5508.
7.Bonassar L.J. and Vacanti C.A. Tissue engineering: The first decade and beyond. Journal of cellular biochemistry supplement. 1998; 30/31: 297-303.
8.Bi W, Deng JM, Zhang Z et al. Sox9 is required for cartilage formation. Nat Genet. 1999; 22: 85– 89.
9.Chen G., D. Liu, M. Tadokoro, R. Hirochika, H. Ohgushi, J. Tanaka, and T. Tateishi. Chondrogenic differentiation of human mesenchymal stem cells cultured in a cobweb-like biodegradable scaffold. Biochem. Biophys. Res. Commun. 2004; 322: 50–55.
10.Diane R.W., Derek P.L., and Kelvin W.L. et al. Hydrostatic pressure enhances chondrogenic differentiation of human bone stromal cells in osteochondrogenic medium. Annals of biomedical engineering. 2008; 36: 813-820.
11.Dunia M., Garcia C., and Daniela F.C. et al. Blending polysaccharides with biodegradable polymer: structure and biological response of chitosan / polycaprolactone blends. Journal of biomedical materials research part B. 2008; 87: 544-554.
12.Darko B., Morimichi M., and Gonhyung K. et al. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system. Experimental Hematology. 2004; 32: 502-509.
13.Frederic M.G., Robert G., and Michel R. Proteoglycan and collagen synthesis are correlated with actin organization in dedifferentiating chondrocytes. European Journal of Cell Biology. 1991; 56: 364-373
14.Hiroyuki T., Shingo M., and Hiroyuki M. et al. Expression of osterix inhibits bone morphogenetic protein-induced chindrogenic differentiation of mesenchymal progenitor cells. J bone miner metab. 2009; 27: 36-45.
15.Hongbin F., Yunyu H., and Chunli Z. et al. Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials. 2006; 27: 4573-4580.
16.Hyun J. L., Byung H. C., and Byoung H. M. et al. Low-intensity Ultrasound Stimulation Enhances Chondrogenic Differentiation in Alginate Culture of Mesenchymal Stem Cells. Artif Organ. 2006; 30: 707~715.
17.Indrawattana N., Chen G., and Tadokoro M. et al. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochemical and biophysical research communications. 2004; 320: 914-919.
18.Julie R.F., Didier H., and Shinichi T. et al. Fetal tracheal augmentation with Cartilage engineered from bone marrow-derived mesenchymal progenitor cells. Journal of pediatric surgery. 2003; 38: 984-987.
19. Koichiro S., Tomoko M., and Chikara M. et al. Effects of insulin-like growth factor I on transforming growth factor-β1 induced chondrogenesis of synovium-derived mesenchymal stem cells cultured in a polyglycolic acid scaffold. Cells tissues organs. 2006; 183: 55-61.
20. Kutyavin I.V., Afonina I.A., Mills A.G., and Hedgpeth J. et al. 3’-Minor groove binder-DNA probes increase sequence specificity at PCR extension temperature. Nucleic acids research. 2000; 28: 655-661.
21.KlausV.D.M., Verena G., Peter M. Relationship between cell shape and type of collagen synthesized as chondrocytes lose their cartilage phenotype in culture. Nature. 1977; 267: 531-532.
22.Lanza R.P., Langer R. and Vacanti J. Principles of tissue engineering. Second edition. New York: Academic Press. 2000.
23.Luis A.S., Kitsie P., and John D.P. et al. FGF-2 Enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. Journal of cellular physiology. 2005; 203: 398-409.
24.Louise A.M., Patrick J.P., and Veronica A.C. et al. A comparison of the involvement of p38, ERK1/2, and PI3K in growth factor-induced chondrogenic differentiation of mesenchymal stem cells. Biochemical and biophysical research communications. 2008; 368: 990-995.
25. Liu H.C., Lee I.C., Wang H.J. Yang S.H. and Young T.H. Preparation of PLLA membranes with different morphologies for culture of MG-63 cell. Biomaterials 2004; 25: 4047-4056.
26.Lossos I.S., Crzrwinski D., Alizadeh A.A., Wechser M.A. and Levy R. et al. Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. The new ngland journal of medicine. 2004; 350: 1828-1837.
27.Likun G., Naoki K., and Yujiang F. et al. Chondrogenic differentiation of human meesnchymal stem cells on photoreactive polymer-modified surfaces. Biomaterials. 2008; 29: 23-32.
28.Naruse K., Mikuni T.Y., and Azuma Y. et al. Anabolic response of mouse bone marrow derived stromal cell clone ST2 cells to low-intensity pulsed ultrasound. Biochemical and biophysical research communications. 2000; 268: 216-220.
29.Neethu M., and Prabha D.N. Polyvinyl alcohol-Polycaprolactone semi IPN scaffold with implication for cartilage tissue engineering. Journal of biomedical materials research part B. 2007; 84: 584-594.
30.N.Garcia-Giralt, R. Izquierdo, and X. Nogues et al. A porous PCL scaffold promotes the human chondrocytes redifferentiation and hyaline-specific extracellular matrix protein synthesis. Journal of biomedical materials research part A. 2008; 85: 1082-1089.
31.Mehlhorn A.T., Niemeyer P., and Kaschte K. et al. Differential effects of BMP-2 and TGF-1 on chondrogenic differentiation of adipose derived stem cells. Cell proliferation. 2007; 40: 809-823.
32.Mackenzie T.C., and Flake A.W. Human mesenchymal stem cells: insights from a surrogate in vivo assay system. Cells tissues organ. 2002; 171: 90.
33.Rosso F., Giordano A., and Barbarisi M. From cell-ECM interactions to tissue engineering. Journal of cellular physiology. 2004; 199: 174-180.
34.Rajaraman R., Rounds D. E., Yen S. P. S., and Rembaum A. A scanning electron microscope study of cell adhesion and spreading in vitro. Experimental cell research 1974; 88: 327-339.
35.Schmitt B., Ringe J., and Haupl T. et al. BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high density culture. Differentiation 2003; 71: 567–577.
36.Teresa I.M., and Anita B.R. Transforming growth factor β regulates the metabolism of proteoglycans in bovine cartilage organ cultures. The journal of biological chemistry. 1988; 263: 12828-12831.
37.Thomas G.P., and Haj A.J. Bone marrow stromal cells are load responsive in vitro. Calcif tissue int. 1996; 58: 101-108.
38.VandeVod P.J., Matthew H.W.T., DeSilva S.P., Mayton L., Wu B. and Wooley P.H. Evaluation of the biocompatibility of a chitosan scaffold in mice. Journal of biomedical materials research. 2002; 59: 585-590.
39.Winer J., Jung C.K. and Williams P.M. et al. Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac mycytes in vitro. Analytical chemistry. 1999; 270: 41-49.
40.Chuang W.Y., Young T.H., Yao C.H. et al. Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro. Biomaterials. 1999; 20: 1479-1487.
41.Young H.J., Jin H.C., and Joo K.S. et al. Different effects of PLGA and chitosan scaffolds on human cartilage tissue engineering. The journal of craniofacial surgery. 2007; 18: 1249-1258.
42.Yong T.X., Li X.X., and Jian Z.S. Bone morphogenetic protein. Biochemical and biophysical research communications. 2007; 362: 550-553.
43.Ying N.W., Zheng Y., James H.P.H., and Hong W.O. et al. Cartilaginous ECM component-modification of the micro-bead culture system for chondrogenic differentiation of mesenchymal stem cells. Biomaterials. 2007; 28: 4056-4067.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44092-
dc.description.abstract細胞型態和形狀會因外界的環境不同而影響細胞的基本功能,例如:分化及增生,利用基材(substrate)來影響細胞的貼附行為,改變細胞型態和形狀,將可控制細胞的生理功能。通過美國食品藥物管理局(FDA)認證,幾丁聚醣(chitosan) 及聚己內酯(PCL)皆為可裂解的生醫材料,其中,幾丁聚醣被廣泛用於傷口敷料及軟骨組織工程,但也有些研究指出幾丁聚醣不利於纖維母細胞的貼附及增生。經研究證明,聚己內酯有助於纖維母細胞的貼附及生長,故被廣泛用於手術縫線。我們期望建立骨髓間葉幹細胞(bone marrow mesenchymal stem cells)培養於不同比例的混摻材料進而調控間葉幹細胞的貼附能力、增生並軟骨分化的可行性。因此,本研究將混和不同比例的聚己內酯及幾丁聚醣,藉以創造出新的混摻材料,透過此混摻材料來調控細胞的貼附能力,進一步達到以不同的細胞型態和形狀來調控幹細胞(stem cells)對於軟骨分化的功能。zh_TW
dc.description.abstractIn different environment, the cellular morphology and shape will affect its physiological function, such as differentiation and proliferation. Therefore, it is a niche to control the physiological function of cell using cultural substrate to regulate the cellular attachment which could induce morphology and shape. Two biodegraded materials (e.g. chitosan and PCL), which were approved by Food and Drug Administration (FDA, US) were used in this study. Chitosan is wildly employed as artificial skin and cartilage tissue engineering. However, some studies indicated that chitosan was not a suitable material for fibroblast attachment and proliferation. Another material, PCL is also wildly used in suture and lots of studies demonstrated that the PCL could promote fibroblast attachment and growth. We would like establish a model of ability of cell adhesion, proliferation rate, and possibility of MSCs differentiate into chondrocyte when cultured on PCL and chitosan blended substrates. In this study, we try to mix chitosan and PCL which could then modulate the adhesive on ability of cells. Further, to promote the function of chondrogenic differentiation of stem cells by altering cell morphology and cell shape.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:39:34Z (GMT). No. of bitstreams: 1
ntu-98-R96548017-1.pdf: 10258283 bytes, checksum: 25eb1280743f1c9c5197fb5f1a5199d9 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要 I
Abstract II
Contents III
Figures V
Tables VIII
Chapter 1. Introduction 1
Chapter 2. Background 3
2-1 The history of promoting chondrogenic differentiation of human mesenchymal stem cells 3
2-2 Tissue engineering 6
2-2-1 What is tissue engineering ? 6
2-2-2 The scaffolds in tissue engineering 7
2-2-3 The research of tissue engineering in cartilage reconstruction 9
2-3 Biomaterials 11
2-3-1 Chitosan 11
2-3-2 Poly-ε-caprolactone (PCL) 12
2-3-3 The purpose of using chitosan blended with poly-ε-caprolactone 14
2-4 Human mesenchymal stem cells from bone marrow: appropriate cell sources 17
Chapter 3. Materials and methods 18
3-1 Materials 18
3-2 Experiment apparatus 21
3-3 Preparation of solution 23
3-4 Preparation of biomaterials 26
3-5 Cell isolation and culture 27
3-6 Flow cytometry analysis 28
3-7 MTT assay 29
3-8 LDH assay 30
3-9 Observation of scanning electron microscopy 31
3-10 Gene expression: Real Time RT - PCR analysis 33
3-11 Protein expression of chondrogenesis: Immuno-Fluorescence assays 36
Chapter 4. Results and discussions 37
4-1 Isolation and phenotype of MSCs 37
4-2 Cell-material system 39
4-3 Chondrogenic differentiation of MSCs 45
4-3-1 Expression of chondrocyte-related gene of MSCs on chitosan/PCL blended substrates 45
4-3-2 Expression of specific-cartilage protein of MSCs on chitosan/PCL blended substrates 48
Chapter 5. Conclusion 50
Reference 52
Appindex 57
dc.language.isoen
dc.subject幾丁聚醣zh_TW
dc.subject聚己內酯zh_TW
dc.subject混掺zh_TW
dc.subject材料zh_TW
dc.subject間葉幹細胞zh_TW
dc.subject軟骨分化zh_TW
dc.subjectchitosanen
dc.subjectchondrogenic differentiationen
dc.subjectmesenchymal stem cellsen
dc.subjectblended materialsen
dc.subjectPCLen
dc.title幾丁聚醣/聚己內酯之混掺基材對於調控間葉幹細胞軟骨分化之研究zh_TW
dc.titleTo Promote Chondrogenic Differentiation of Human Mesenchymal Stem Cells on Chitosan/PCL blended substratesen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.coadvisor王至弘(Jyh-Horng Wang)
dc.contributor.oralexamcommittee林宏殷(Hung-Yin Lin),李玫樺(Mei-Hwa Lee)
dc.subject.keyword幾丁聚醣,聚己內酯,混掺,材料,間葉幹細胞,軟骨分化,zh_TW
dc.subject.keywordchitosan,PCL,blended materials,mesenchymal stem cells,chondrogenic differentiation,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2009-08-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
10.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved