請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44084完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡豐羽(Feng-Yu Tsai) | |
| dc.contributor.author | Chun-Ting Chou | en |
| dc.contributor.author | 周俊廷 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:39:13Z | - |
| dc.date.available | 2011-08-17 | |
| dc.date.copyright | 2009-08-17 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-12 | |
| dc.identifier.citation | 1. David S. Ginley and Clark Bright, MRS Bulletin, 25(8)
p.15-18 (2000). 2. C. G. Granqvist and A. Hultaker, Thin Solid Films, 41 p.1-5 (2002). 3. H. Sheng,1 N.W. Emanetoglu,1 S. Muthukumar,2 B.V. Yakshinskiy,3 S. Feng,1 and Y.Lu1, J. Elec. Mat., Vol.32, p.9 (2003). 4. Han-Ki Kim, Sang-Heon Han, and Tae-Yeon Seong, Appl.Phys.Lett. Vol.77, p.11 , (2000). 5. Han-Ki Kim, Kyoung-Kook Kim, Seong-Ju Park, and Tae-Yeon Seong , J.Appl.Phys.Vol.94, p.6 ,(2003). 6. Y.G. Wanga, S.P. Laua,, X.H. Zhangb, H.H. Hngc, H.W. Leea, S.F. Yua, B.K. Taya, Journal of Crystal Growth, Vol.259, p.335–342, (2003). 7. Y.R. Ryu, S. Zhu,1, D.C. Look, J.M. Wrobel, H.M. Jeong, H.W. White , Journal of Crystal Growth, Vol.216 , p.330- 334 ,(2000). 8. K﹒ Tonooka , H﹒Bando, Y﹒Aiura, Thin Solid Films (445), p.327- 331, (2003). 9. G. K. R. Senadeera, K. Nakamura, T. Kitamura, Y. wada, S. Yanagide, Appl. Phys. Lett. 83, p.5470-5472, (2003). 10.C. Lee, K. Lim, and J. Song, Solar Energy Materials and Solar cells, 43, p.37 (1996) 11.黃敬佩,ITO導電玻璃及相關透明導電膜之原理及應用,(2006) 12.F. Streintz, Annals of Physics, (Leipzig), 9, p.854 (1902). 13.K. Badeker, Annals of Physics, (Leipzig), 22, p.749 (1907). 14.J.T. Littleton, U.S. Patent, 2,118,795 (1938). 15.H.A. McMaster, U.S. Patent, 2,429,420 (1947). 16.K. Saitoa, Y. Hiratsukaa, A. Omataa, H. Makinob, S. Kishimotob, T. Yamamotob, N. Horiuchic, H. Hirayamac, Superlattices and Microstructures 42, p.172–175 (2007) 17.Sang-Hee Ko PARK_, Jeong-Ik LEE, Chi-Sun HWANG and Hye Yong CHU, Japanese Journal of Applied Physics, Vol. 44, No. 7, p. L 242–L 245 (2005) 18.Xue-Yong Li, Hong-Jian Li, Zhi-Jun Wang, Hui Xia, Zhi- Yong Xiong, Jun-Xi Wang, Bing-Chu Yang, Optics Communications 282, 247–252 (2009) 19.Chaehwan JEONG, Ho-Sung KIM, Duck-Rye CHANG, and Koichi KAMISAKO, Japanese Journal of Applied Physics, Vol. 47, No. 7, p. 5656–5658 (2008) 20.Keh-moh Lin A Yu-Yu Chen A Keng-Yu Chou, J. Sol-Gel Sci Technol. 49:p.238–242 (2009) 21.J. L. Vossen, Physics of Thin Films, 9, p.1-64 (1977) 22.L. Dunlop, A. Kursumovic, and J. L. MacManus-Driscoll, APPLIED PHYSICS LETTERS 93, p.172111 (2008) 23.楊明輝, “金屬氧化物透明導電材料的基本原理”, 工業材料雜 誌,179期,p.134-144 (2001) 24.Roy. G. Gordon, MRS Bulletin, 25(8), p.52-57 (2000) 25.T. Minami, Semiconductor Science and Technology, 20, S35- S44 (2005) 26.潘漢昌、蕭銘華、蘇健穎、蕭健男,透明導電膜簡介,科儀新 知,26,p.46 (2004). 27.P. K. Song, M. Watanabe, M. Kon, A. Mitsui, and Y. Shigesato, Thin Solid Films, 411, p.82 (2002). 28.M. Miyazaki, K. Sato, A. Misui, and H. Nishimura, J. Non- Cryst. Solids, 218, p.323 (1997). 29.M. Yan, H. T. Zhang, E. J. Widjaja, and R. P. H. Chang, J. Appl. Phys., 94, p.5240 (2003). 30.Z. F. Liu, F. K. Shan, Y. X. Li, B. C. Shin, and Y. S. Yu, J. Cryst. Growth, 259, p.130 (2003). 31.B. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedov, and R. A. Rabadanov, Thin Solid Films, 260, p.19 (1995). 32.K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Japan J. Appl. Phys., 36, L1453 (1997). 33.S. Major, A. Banerjee, and K. L. Chopra, Thin Solid Films, 108, 333 (1983). 34.S. A. Studenikin, N. Golgeo, and M. Cocivera, J. Appl. Phys., 83, 2104 (1998). 35.K. Y. Cheong, N. Muti, and S. R. Ramanan, Thin Solid Films, 410, 142 (2002). 36.S. Fujihara, A. Siziki, and T. Kimura, J. Appl. Phys., 94, 2411 (2003). 37.J. H. Lee and B. O. Park, Thin Solid Films, 426, 94 (2003). 38.H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, “Semiconducting Transparent Thin Films”, Institute of Physics Publishing (1995). 39.S. Y. Lee and B. O. Park, Thin Solid Films, 484, p.184 (2005). 40.J. W. Elam and S. M. George, Chem. Mater. 15, p.1020- 1028 (2003) 41.J. W. Elam and S. M. George, Chem. Mater. 15, p.1020- 1028 (2003) 42.Marianna Kemell, Mikko Ritala, Markku Leskela, Emmanuel Ossei-Wusu, Jurgen Carstensen, Helmut Foll, Microelectronic Engineering 84 p.313–318 (2007) 43.Suntola and J. Antson, US Patent 4 058 430 (1977) 44.Riikka L. Puurunen, Journal of Applied Physics, 97, 121301 (2005) 45.L. Niinisto*, J. Paivasaari, J. Niinisto, M. Putkonen, and M. Nieminen, phys. stat. sol. (a), 201, No. 7, 1443 (2004) 46.L. Sagalowicz, G. R. Fox, “Planar defects in ZnO thin films deposition on optical fibers and flat substrates”, J. of Master. Research 14, p.1876-1885 (1999) 47.李昀潤,高分子基板之氣體阻障層研究,台灣大學材料科學及工 程學所碩士論文 (2008) 48.Swee-Yong Pung, Kwang-Leong Choy1, Xianghui Hou and Chongxin Shan, Nanotechnology, 19, 435609 (2008) 49.SANG-HEE KO PARK, JOURNAL OF MATERIALS SCIENCE 39, p.2195 – 2197 (2004) 50.Suzuki, Akio et al. Thin Solid Films, v 517, n 4, p 1478- 1481 (2008) 51.Peng, Kun-Cheng et al. Surface and Coatings Technology, v 202, n 22-23, p. 5425-5430 (2008) 52.Lee, Ka Eun et al. Current Applied Physics, v 9, n 3, p. 683-687, (2009) 53.K. Saito et al. Superlattices and Microstructures 42 p.172–175 (2007) 54.陳靜怡,氧化鋅中介層對ITO透明導電膜性質之影響,成功大學材料 科學所,碩士論文 (2002) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44084 | - |
| dc.description.abstract | 本篇研究運用原子層沉積技術(ALD)來成長氧化鋅鉿薄膜,以應用於軟性電子元件之透明電極。原子層沉積技術成長的氧化鋅鉿薄膜之導電度會受限於氧化鋅與二氧化鉿組成之層狀堆疊結構,這種層狀堆疊結構會妨礙二氧化鉿層中的部分分子發揮其完全的摻雜效應,由於載子穿過氧化鋅層的傳導受到妨礙,導致多餘的二氧化鉿分子僅貢獻了極少量地載子。為了克服這個問題,我們提出了一種新穎的原子層沉積製程的步驟來使薄膜的層狀堆疊改變成均勻混摻的結構,經由這個改變我們令氧化鋅鉿薄膜的電阻率從2.0 E-03Ω-cm降低至8.5 E-04 Ω-cm。執行此新穎的製程是在同一次原子層沉積的週期中連續通入兩種有機氧化前驅物,只需要少量的二氧化鉿分子就能達到高摻雜濃度的效果,少量的雜質摻雜也同時保持了氧化鋅鉿薄膜中氧化鋅的載子遷移率。而氧化鋅鉿薄膜的均勻性可經由穿透式電子顯微鏡(TEM)配合能量散布光譜儀(EDX)的元素分析來證明。
至於光學透明度,透明導電薄膜的可見光的穿透率超過了85%,足以和常用的氧化銦錫薄膜相比,另外,由於製程溫度低(約150℃),此方法適用於高分子基板,且沉積於高分子基板的薄膜導電率可維持和在玻璃基板上差不多。此外,原子層沉積技術成長的氧化鋅鉿薄膜也具有不錯的阻氣性。整體而言,本篇研究之原子層沉積氧化鋅鉿薄膜具備高導電度、高穿透率、低溫製程和低的氣體滲透率等優點,相當適合使用於軟性電子的應用。 | zh_TW |
| dc.description.abstract | This study utilizes atomic layer deposition (ALD) to develop Hf:ZnO films for use as transparent conductive electrodes of flexible electronics. The conductivity of the ALD Hf:ZnO film was found to be limited by the layer-by-layer nature of the HfO2 and ZnO constituents, which prevented some HfO2 molecules in the HfO2 layers from applying their full doping effects, resulting in redundant HfO2 molecules that contributed little carriers while hindering conduction of carriers across the ZnO layers. To overcome this issue, we developed a novel ALD process to change the layer-by-layer HfO2/ZnO structure to a more homogeneous mixture, and as a result we improved the resistivity of the ALD Hf:ZnO film from 2.0 E-03 to 8.5 E-04 Ω-cm. Using the novel ALD process, which involved exposing the substrate consecutively with the two organometallic precursors within the same ALD cycle, high doping concentration could be obtained with low HfO2 content; meanwhile, with low HfO2 content, the carrier mobility of ZnO could be better preserved in the Hf:ZnO film. The homogeneity of the Hf:ZnO film deposited with the novel process was confirmed with TEM and energy-dispersive X-ray spectroscopy (EDX).
In terms of optical transparency, the ALD Hf:ZnO film showed >85% transmittance throughout the visible wavelengths, exceeding that of the widely used indium tin oxide (ITO). With its low deposition temperature (150 ºC), the novel ALD process was applicable to polymer substrates, and the resulted Hf:ZnO films largely retained the conductivity of those deposited on glass substrates. Additionally, the ALD Hf:ZnO film was found to be effective gas-diffusion barriers for the polymer substrates: Its helium transmission rate was lower than sputtered films by more than 1 orders of magnitude. With its high conductivity, high optical transparency, low deposition temperature, and low gas permeability, the ALD Hf:ZnO film developed in this study will offer many advantages for flexible electronics applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:39:13Z (GMT). No. of bitstreams: 1 ntu-98-R96527048-1.pdf: 5741412 bytes, checksum: 8b499b1b24fcf6a8f152651440a761ec (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Acknowledgement…………………………………………………………i
Abstract (Chinese)……………………………………………………ii Abstract (English)…………………………………………………iii Contents…………………………………………………………………v List of Figures.……………………………………………………vii List of Tables.……………………………………………………viii Chapter 1 Introduction………………………………………………1 1.1 Brief introduction of transparent conducting thin films………………………………………………………………1 1.2. Objective statement……………………………………………3 Chapter 2 Literature reviews………………………………………4 2.1. Introduction of two kinds of transparent conducting thin films…………………………………………………………4 2.1.1 Metallic thin films…………………………………………4 2.1.2 Conducting metallic oxides thin films(Transparent conducting oxides)…………………………………………5 2.2. Different methods of preparing transparent conducting oxides……………………………………………………………11 2.3. Reasons for choosing Hf as a dopant in transparent conducting oxides………………………………………………15 2.4. Introduction of atomic layer deposition process………18 Chapter 3 Experimental details……………………………………21 3.1 Materials…………………………………………………………21 3.2 ALD process………………………………………………………22 3.3 Properties analysis of ZnO:Hf film (including electrical, optical, structure, element, and morphology properties)………………………………………25 3.3.1 Measurement of electrical properties…………………25 3.3.2 Structure and crystallinity of ZnO:Hf film…………25 3.3.3 Element quantitative analysis……………………………26 3.3.4 Morphology observation……………………………………26 3.3.5 Transmittance of ZnO:Hf film……………………………26 3.4 Helium transmittance rate measurement……………………27 Chapter 4 Results and discussion…………………………………31 4.1 Mechanism of consecutive pulse step of an ALD cycle…32 4.1.1 Sequence of precursors……………………………………32 4.1.2 Temperature of doping precursor…………………………32 4.2 Characteristics of control ALD Hf doped ZnO films……37 4.3 Characteristics of experimental ALD Hf doped ZnO films………………………………………………………………41 4.4 Differences between control and experimental ALD Hf doped ZnO films…………………………………………………46 4.4.1 Mobility………………………………………………………46 4.4.2 Morphology observation……………………………………46 4.4.3 TEM cross section observation……………………………47 4.5 The contrast of resistivity of transparent conducting oxide film between ALD process and other processes…52 4.6 The optical and gas barrier properties of Hf doped ZnO films…………………………………………………………55 4.6.1 Transmittance of Hf doped ZnO films……………………55 4.6.2 Gas barrier of Hf doped ZnO films………………………56 Chapter 5 Conclusions and Future Works…………………………59 5.1 Conclusions………………………………………………………59 5.2 Future works………………………………………………………61 References………………………………………………………………63 | |
| dc.language.iso | en | |
| dc.subject | 透明導電膜 | zh_TW |
| dc.subject | 原子層沉積技術 | zh_TW |
| dc.subject | 氧化鋅鉿 | zh_TW |
| dc.subject | 阻氣層 | zh_TW |
| dc.subject | 軟性電子 | zh_TW |
| dc.subject | transparent conducting oxides | en |
| dc.subject | gas barrier | en |
| dc.subject | Hf doped ZnO | en |
| dc.subject | atomic layer deposition | en |
| dc.subject | flexible electronics | en |
| dc.title | 原子層沉積技術成長透明導電氧化物薄膜:氧化鋅鉿應用於軟性電子之研究 | zh_TW |
| dc.title | Transparent conducting oxide films by atomic layer deposition for flexible electronics:Hf doped ZnO | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 段維新(Wei-Hsing Tuan),謝宗霖(Jay Shieh) | |
| dc.subject.keyword | 透明導電膜,原子層沉積技術,氧化鋅鉿,阻氣層,軟性電子, | zh_TW |
| dc.subject.keyword | transparent conducting oxides,atomic layer deposition,Hf doped ZnO,gas barrier,flexible electronics, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 5.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
