請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44068完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志成 | |
| dc.contributor.author | Chien-Ju Chen | en |
| dc.contributor.author | 陳芊如 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:38:32Z | - |
| dc.date.available | 2011-08-14 | |
| dc.date.copyright | 2009-08-14 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-12 | |
| dc.identifier.citation | 1. Wolfe, F., Ross, K., Anderson, J., Russell, I.J., and Hebert, L. (1995). The prevalence and characteristics of fibromyalgia in the general population. Arthritis Rheum 38, 19-28.
2. Ablin, J., Neumann, L., and Buskila, D. (2008). Pathogenesis of fibromyalgia - a review. Joint Bone Spine 75, 273-279. 3. Arnold, L.M. (2009). Pain and the brain: chronic widespread pain. J Clin Psychiatry 70, e10. 4. Arnold, L.M. (2008). Management of fibromyalgia and comorbid psychiatric disorders. J Clin Psychiatry 69 Suppl 2, 14-19. 5. Russell, I.J., Orr, M.D., Littman, B., Vipraio, G.A., Alboukrek, D., Michalek, J.E., Lopez, Y., and MacKillip, F. (1994). Elevated cerebrospinal fluid levels of substance P in patients with the fibromyalgia syndrome. Arthritis Rheum 37, 1593-1601. 6. Larson, A.A., Giovengo, S.L., Russell, I.J., and Michalek, J.E. (2000). Changes in the concentrations of amino acids in the cerebrospinal fluid that correlate with pain in patients with fibromyalgia: implications for nitric oxide pathways. Pain 87, 201-211. 7. Gracely, R.H., Petzke, F., Wolf, J.M., and Clauw, D.J. (2002). Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum 46, 1333-1343. 8. McBeth, J., Chiu, Y.H., Silman, A.J., Ray, D., Morriss, R., Dickens, C., Gupta, A., and Macfarlane, G.J. (2005). Hypothalamic-pituitary-adrenal stress axis function and the relationship with chronic widespread pain and its antecedents. Arthritis Res Ther 7, R992-R1000. 9. Russell, I.J., Vaeroy, H., Javors, M., and Nyberg, F. (1992). Cerebrospinal fluid biogenic amine metabolites in fibromyalgia/fibrositis syndrome and rheumatoid arthritis. Arthritis Rheum 35, 550-556. 10. Petzke, F., and Clauw, D.J. (2000). Sympathetic nervous system function in fibromyalgia. Curr Rheumatol Rep 2, 116-123. 11. Sluka, K.A., Kalra, A., and Moore, S.A. (2001). Unilateral intramuscular injections of acidic saline produce a bilateral, long-lasting hyperalgesia. Muscle Nerve 24, 37-46. 12. Sluka, K.A., Rohlwing, J.J., Bussey, R.A., Eikenberry, S.A., and Wilken, J.M. (2002). Chronic muscle pain induced by repeated acid Injection is reversed by spinally administered mu- and delta-, but not kappa-, opioid receptor agonists. J Pharmacol Exp Ther 302, 1146-1150. 13. Skyba, D.A., King, E.W., and Sluka, K.A. (2002). Effects of NMDA and non-NMDA ionotropic glutamate receptor antagonists on the development and maintenance of hyperalgesia induced by repeated intramuscular injection of acidic saline. Pain 98, 69-78. 14. Hoeger-Bement, M.K., and Sluka, K.A. (2003). Phosphorylation of CREB and mechanical hyperalgesia is reversed by blockade of the cAMP pathway in a time-dependent manner after repeated intramuscular acid injections. J Neurosci 23, 5437-5445. 15. Skyba, D.A., Lisi, T.L., and Sluka, K.A. (2005). Excitatory amino acid concentrations increase in the spinal cord dorsal horn after repeated intramuscular injection of acidic saline. Pain 119, 142-149. 16. Tillu, D.V., Gebhart, G.F., and Sluka, K.A. (2008). Descending facilitatory pathways from the RVM initiate and maintain bilateral hyperalgesia after muscle insult. Pain 136, 331-339. 17. Sluka, K.A., Price, M.P., Breese, N.M., Stucky, C.L., Wemmie, J.A., and Welsh, M.J. (2003). Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain 106, 229-239. 18. Reeh, P.W., and Kress, M. (2001). Molecular physiology of proton transduction in nociceptors. Curr Opin Pharmacol 1, 45-51. 19. Sutherland, S.P., Benson, C.J., Adelman, J.P., and McCleskey, E.W. (2001). Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc Natl Acad Sci U S A 98, 711-716. 20. Chen, C.C., Zimmer, A., Sun, W.H., Hall, J., and Brownstein, M.J. (2002). A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc Natl Acad Sci U S A 99, 8992-8997. 21. Price, M.P., McIlwrath, S.L., Xie, J., Cheng, C., Qiao, J., Tarr, D.E., Sluka, K.A., Brennan, T.J., Lewin, G.R., and Welsh, M.J. (2001). The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32, 1071-1083. 22. Mogil, J.S., Breese, N.M., Witty, M.F., Ritchie, J., Rainville, M.L., Ase, A., Abbadi, N., Stucky, C.L., and Seguela, P. (2005). Transgenic expression of a dominant-negative ASIC3 subunit leads to increased sensitivity to mechanical and inflammatory stimuli. J Neurosci 25, 9893-9901. 23. Wemmie, J.A., Price, M.P., and Welsh, M.J. (2006). Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci 29, 578-586. 24. Light, A.R., Hughen, R.W., Zhang, J., Rainier, J., Liu, Z., and Lee, J. (2008). Dorsal root ganglion neurons innervating skeletal muscle respond to physiological combinations of protons, ATP, and lactate mediated by ASIC, P2X, and TRPV1. J Neurophysiol 100, 1184-1201. 25. Sluka, K.A., Radhakrishnan, R., Benson, C.J., Eshcol, J.O., Price, M.P., Babinski, K., Audette, K.M., Yeomans, D.C., and Wilson, S.P. (2007). ASIC3 in muscle mediates mechanical, but not heat, hyperalgesia associated with muscle inflammation. Pain 129, 102-112. 26. Ji, R.R., Kohno, T., Moore, K.A., and Woolf, C.J. (2003). Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 26, 696-705. 27. Ji, R.R., Gereau, R.W.t., Malcangio, M., and Strichartz, G.R. (2009). MAP kinase and pain. Brain Res Rev 60, 135-148. 28. Suzuki, R., and Dickenson, A. (2005). Spinal and supraspinal contributions to central sensitization in peripheral neuropathy. Neurosignals 14, 175-181. 29. Westberg, L., and Eriksson, E. (2008). Sex steroid-related candidate genes in psychiatric disorders. J Psychiatry Neurosci 33, 319-330. 30. Okifuji, A., and Turk, D.C. (2006). Sex hormones and pain in regularly menstruating women with fibromyalgia syndrome. J Pain 7, 851-859. 31. Ter Horst, G.J., Wichmann, R., Gerrits, M., Westenbroek, C., and Lin, Y. (2009). Sex differences in stress responses: focus on ovarian hormones. Physiol Behav 97, 239-249. 32. Roeska, K., Doods, H., Arndt, K., Treede, R.D., and Ceci, A. (2008). Anxiety-like behaviour in rats with mononeuropathy is reduced by the analgesic drugs morphine and gabapentin. Pain 139, 349-357. 33. Narita, M., Kaneko, C., Miyoshi, K., Nagumo, Y., Kuzumaki, N., Nakajima, M., Nanjo, K., Matsuzawa, K., Yamazaki, M., and Suzuki, T. (2006). Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala. Neuropsychopharmacology 31, 739-750. 34. Rosen, J.B., and Schulkin, J. (1998). From normal fear to pathological anxiety. Psychol Rev 105, 325-350. 35. Fitts, R.H. (1994). Cellular mechanisms of muscle fatigue. Physiol Rev 74, 49-94. 36. Burnes, L.A., Kolker, S.J., Danielson, J.F., Walder, R.Y., and Sluka, K.A. (2008). Enhanced muscle fatigue occurs in male but not female ASIC3-/- mice. Am J Physiol Regul Integr Comp Physiol 294, R1347-1355. 37. Karim, F., Bhave, G., and Gereau, R.W.t. (2001). Metabotropic glutamate receptors on peripheral sensory neuron terminals as targets for the development of novel analgesics. Mol Psychiatry 6, 615-617. 38. Honda, K., Kitagawa, J., Sessle, B.J., Kondo, M., Tsuboi, Y., Yonehara, Y., and Iwata, K. (2008). Mechanisms involved in an increment of multimodal excitability of medullary and upper cervical dorsal horn neurons following cutaneous capsaicin treatment. Mol Pain 4, 59. 39. Adwanikar, H., Karim, F., and Gereau, R.W.t. (2004). Inflammation persistently enhances nocifensive behaviors mediated by spinal group I mGluRs through sustained ERK activation. Pain 111, 125-135. 40. Sluka, K.A., and Audette, K.M. (2006). Activation of protein kinase C in the spinal cord produces mechanical hyperalgesia by activating glutamate receptors, but does not mediate chronic muscle-induced hyperalgesia. Mol Pain 2, 13. 41. Zhuang, Z.Y., Gerner, P., Woolf, C.J., and Ji, R.R. (2005). ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain 114, 149-159. 42. Guo, W., Wang, H., Watanabe, M., Shimizu, K., Zou, S., LaGraize, S.C., Wei, F., Dubner, R., and Ren, K. (2007). Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci 27, 6006-6018. 43. Kawasaki, Y., Kohno, T., Zhuang, Z.Y., Brenner, G.J., Wang, H., Van Der Meer, C., Befort, K., Woolf, C.J., and Ji, R.R. (2004). Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. J Neurosci 24, 8310-8321. 44. Lonze, B.E., and Ginty, D.D. (2002). Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605-623. 45. Drdla, R., and Sandkuhler, J. (2008). Long-term potentiation at C-fibre synapses by low-level presynaptic activity in vivo. Mol Pain 4, 18. 46. Yoshimura, Y., Inaba, M., Yamada, K., Kurotani, T., Begum, T., Reza, F., Maruyama, T., and Komatsu, Y. (2008). Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex. Eur J Neurosci 28, 730-743. 47. Talley, E.M., Cribbs, L.L., Lee, J.H., Daud, A., Perez-Reyes, E., and Bayliss, D.A. (1999). Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19, 1895-1911. 48. Hu, H.J., Alter, B.J., Carrasquillo, Y., Qiu, C.S., and Gereau, R.W.t. (2007). Metabotropic glutamate receptor 5 modulates nociceptive plasticity via extracellular signal-regulated kinase-Kv4.2 signaling in spinal cord dorsal horn neurons. J Neurosci 27, 13181-13191. 49. Mills, C.D., Fullwood, S.D., and Hulsebosch, C.E. (2001). Changes in metabotropic glutamate receptor expression following spinal cord injury. Exp Neurol 170, 244-257. 50. Hucho, T., and Levine, J.D. (2007). Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron 55, 365-376. 51. Wei, F., and Zhuo, M. (2008). Activation of Erk in the anterior cingulate cortex during the induction and expression of chronic pain. Mol Pain 4, 28. 52. Greco, R., Tassorelli, C., Armentero, M.T., Sandrini, G., Nappi, G., and Blandini, F. (2008). Role of central dopaminergic circuitry in pain processing and nitroglycerin-induced hyperalgesia. Brain Res 1238, 215-223. 53. Lee, M.C., Zambreanu, L., Menon, D.K., and Tracey, I. (2008). Identifying brain activity specifically related to the maintenance and perceptual consequence of central sensitization in humans. J Neurosci 28, 11642-11649. 54. Svensson, C.I., Tran, T.K., Fitzsimmons, B., Yaksh, T.L., and Hua, X.Y. (2006). Descending serotonergic facilitation of spinal ERK activation and pain behavior. FEBS Lett 580, 6629-6634. 55. Hunt, S.P., and Mantyh, P.W. (2001). The molecular dynamics of pain control. Nat Rev Neurosci 2, 83-91. 56. Suzuki, R., Morcuende, S., Webber, M., Hunt, S.P., and Dickenson, A.H. (2002). Superficial NK1-expressing neurons control spinal excitability through activation of descending pathways. Nat Neurosci 5, 1319-1326. 57. Rivat, C., Vera-Portocarrero, L.P., Ibrahim, M.M., Mata, H.P., Stagg, N.J., De Felice, M., Porreca, F., and Malan, T.P. (2009). Spinal NK-1 receptor-expressing neurons and descending pathways support fentanyl-induced pain hypersensitivity in a rat model of postoperative pain. Eur J Neurosci 29, 727-737. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44068 | - |
| dc.description.abstract | 長期以來 ,纖維肌痛症在全世界造成了嚴重的保健問題。大約百分之十的人口受到此病症影響,而病人當中又以女性佔大多數。纖維肌痛症病患除了慢性疼痛外,也經常伴隨有睡眠和情緒失調的問題。KA Sluka的研究團隊發展出藉由重複在鼠朏腸肌注射酸性生理實驗水引發長期痛覺敏感化的動物模式,以進一步研究纖維肌痛症和其他慢性疼痛疾病的機制。目前已知在第三型酸敏性離子通道剔除(Asic3-/-)的小鼠中,無法經由酸誘導產生慢性疼痛過敏現象;然而,尚未有報告研究此動物模式中是否也會引發相關的情緒失調,以及在痛覺傳導中由Asic3所調節的神經活性變化分子機制 。本研究初步發現,在酸誘導慢性痛覺敏感化一週後,Asic3野生型母鼠在焦慮相關行為表現尚有增加的趨勢,此現象在公鼠或是Asic3剔除母鼠中皆不存在。在重複注射酸之後,小鼠脊髓內的ERK活性有顯著的增加。進一步的研究發現,重複的酸刺激會誘發Asic3野生型小鼠脊髓中 Cav3.2和mglur1,mgulr5 mRNA長期表現量的增加;和Asic3剔除小鼠脊髓中NR2A表現量增加。我們進一步檢視在重複酸刺激後所活化的腦部神經迴路是否平行調節憂鬱行為和痛覺傳導,然而免疫組織化學的結果顯示,腦部與痛覺訊息下行傳遞或是憂鬱行為相關的核區的ERK活性都沒有顯著的增加 。總結以上實驗我們發現由酸所引發、Asic3調控的長期肌肉疼痛過敏化動物模式中會選擇性的在雌性小鼠中引起憂鬱相關行為的增加 ;而Asic3也調節了中樞敏感化時Cav3.2,mgluR1,mgluR5和NR2A mRNA的表現量。 而腦部活動是否參與此動物模式中酸引發的長期痛覺敏感和憂鬱行為,尚須更多實驗加以驗證。 | zh_TW |
| dc.description.abstract | Chronic wide-spread pain of skeletal muscle (CWP) has long been a major health problem around the world. 10-15% of the general population reports affected while approximately 90% of the patients are female. In addition to chronic, widespread musculoskeletal allodynia/hyperalgesia, sleep and emotion disorders are also commonly found in patients with CWP syndrome. To study CWP and related chronic muscle pain, Sluka et al. had developed an animal model where repeated injections of acidic saline into one gastrocnemius muscle produced a long-lasting bilateral hyperalgesia without tissue damage. Strikingly, the phenotype is abolished in mice lacking Acid sensing ion channel 3 (Asic3). However, whether this model has associated emotional disorder and the underlying neuronal mechanisms of pain transduction, especially the role of ASIC3, has not been tested. In the present study, we found female Asic3 wild type (Asic3+/+) but not knockout (Asic3-/-) mice showed increased depression-like behavior 7 days after induction of hyperalgesia while male mice appeared to be normal. Decease of locomoton activity was found in male Asic3-/- mice and Asic3+/+ mice receiving intramuscular acid injection. ERK activity was increased in spinal cord dorsal horn after the second acidic saline injection in both Asic3+/+ and Asic3-/- mice. Also, there was prolonged up-regulation of Cav3.2, mgluR1, mgulR5 transcripts in lumbar spinal cord after second acid injection in Asic3+/+ mice. In contrast, the mRNA level of spinal NR2A was increased in Asic3-/- mice. We further examined whether the chronic muscle hyperalgesia involved brain facilitation pathways that affect both pain transduction and emotional disorder. However, the results of immunohistochemistry revealed no significant change in ERK activity in brain regions related to descending pain pathway or depression behavior. In sum, the present study revealed that 1) ASIC3-mediated chronic muscle pain would selectively trigger depression-like behaviors in female mice; 2) ASIC3-dependent central sensitization is involved in the up-regulation of Cav3.2, mgluR1, mgluR5, and NR2A in spinal cord. More works need to be carried out to determine the involvement of super spinal region in the acid-induced hyperalgesia/depression.
Key words: muscle, hyperalgesia, ASIC3, depression, pERK, spinal cord | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:38:32Z (GMT). No. of bitstreams: 1 ntu-98-R96b41029-1.pdf: 4328802 bytes, checksum: 39a1ef4cf3b359178041f480877f7c66 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要……………………………………………………………………..ⅴ
Abstract……………………………………………………………………..ⅵ Chapter 1: Introduction 1.1 Chronic muscle pain………………………………………………………….1 1.2 Acid-induced long-term hyperalgesia…………………...…………………...2 1.3 Role of ASIC3 in pain………………………………………………………………...…………3 1.4 Central mechanism of pain…………………………………………………...5 1.5 Objectives…………………………………………………………………….6 Chapter 2: Material and Methods 2.1 Animals………………………………………….……………………………7 2.2 Induction of Chronic Hyperalgesia………………………….………………..7 2.3 Behavioral Test………………………….……………………………………7 2.3.1 von Frey test…………………………………………..………………8 2.3.2 Open field test…………………………………………………………8 2.3.3 Forced-swimming test…………………………....…………...………9 2.4 Spinal Cord Immunohistochemistry………………………...…..……………9 2.4.1 Tracing of muscle innervated spinal cord………………….………….9 2.4.2 Sample preparation…………………………………………….…………….9 2.4.3 Immunoflorescence………………………………...………………...10 2.5 Transcriptional Changes in Spinal Cord……………………….……..……..10 2.5.1 RNA extraction………………………………….……………..…….11 2.5.2 Synthesis of single strain cDNA…………………………...…………..11 2.5.3 Quantitative Real-Time PCR……………………………….….………11 2.6 Brian immunohistochemistry………………………………….……………12 2.6.1 Sample preparation………………………………………….…………12 2.6.2 Immunostaining………………………………………………………..12 2.7 Statistical analysis…………………………………………………………...13 Chapter 3: Results 3.1 Behavioral tests………………………………………………………………14 3.1.1 Repeated injection of acidic saline induced secondary hyperalgesia in CD1/ICR female mice…………………………...………….14 3.1.2 Repeated injection of acidic saline selectively induced depression-like behavior in female Asic3+/+ mice……………...…………..15 3.1.3 Measurement locomotion activity after repeated injection of acidic saline…………………………………………...…………………..15 3.1.4 Anxiety-like behavior of mice in open field test after repeated injection of acidic saline………………………………...…………16 3.2 pERK immunoactivity in spinal cord…………………...…………………..16 3.2.1 Determination of gastrocnemius muscle innervated spinal cord using Fluoro-Gold anterior-grade tracing……………...………..16 3.2.2 pERK immunoreactivity increased significantly after 2nd injection of acidic saline……………………………………...…………17 3.2.3 pERK immunoreactive cells are mostly superficial dorsal horn neurons………………………………………...………………..17 3.3 Transcriptional changes in lumbar spinal cord after injections of acidic saline……………………………………...…………….18 3.4 pERK activities in Brain regions after the 2nd injection of acidic saline………………………………………………...……………..19 Chapter 4: Discussion 4.1 Repeated acid injection induced long-term secondary hyperalgesia in female mice………………………………………………………21 4.2 Repeated acid injection selectively induced depression-like behavior, but not anxiety-like behavior, in female Asic3+/+ mice…………...……22 4.3 Decreased travel distance during open field test was observed in male mice……………………………………………………………………….23 4.4 Increase of pERK activity in superficial spinal cord dorsal horn neurons after injections of acidic saline……………………………….….…24 4.5 Gene transcriptional changes involved in the development of acid-induced hyperalgesia……………………………………………….….…….25 4.6 Brain activity after the induction of hyperalgesia………………….…………26 References………………………………………….…….………………………….29 Figures Figure 1. Flow chart of the experimental design for behavior tests…………...……….35 Figure 2. Flow Chart of sample collecting procedures in pERK immunohistochemistry study…………………………………………..……………………………….36 Figure 3. Repeated intramuscular acid injection induced long-term hyperalgesia in Asic3+/+ Female mice…………………………………………………….…………………………………..37 Figure 4. Repeated injection of acidic saline induced depression-like behavior in female Asic3+/+ mice………………………………………………………………………………………….38 Figure 5. No significant change in anxiety-like behavior was observed in open field test……………………………………………………………………………………………………………….....39 Figure 6. Decreased locomoton activity in acid-induced male but not female Asic3+/+ mice…………………………………………………………………………………………………….40 Figure 7. Fluoro-Gold tracing of gastrocnemius muscle innvervated spinal cord neurons…………………………………………………………………………………………………………...41 Figure 8. The number of pERK immunoreactive cells in spinal cord dorsal horn increased significantly after 2nd injection of pH4.0 saline………………………...…………42 Figure 9. Superficial dorsal horn neurons were activated 2 minutes after the second injection of pH4.0 saline………………………………………………………………………..43 Figure10. Quantitative real-time PCR analysis of transcriptional changes in lumbar spinal cord of Asic3+/+ mice received intramuscular acid-injection………………...……44 Figure11. Quantitative real-time PCR analysis of transcriptional changes in lumbar spinal cord of Asic3-/- mice received intramuscular acid-injection………………………45 Figure12. Brain Regions showed pERK signal after 2nd injection…………………….46 Appendix Real-time PCR pimer list…………………………………………………………………………………..47 | |
| dc.language.iso | en | |
| dc.subject | 憂鬱 | zh_TW |
| dc.subject | 第三型酸敏性離子通道 | zh_TW |
| dc.subject | 脊髓 | zh_TW |
| dc.subject | 疼痛過敏化 | zh_TW |
| dc.subject | 肌肉 | zh_TW |
| dc.subject | muscle | en |
| dc.subject | spinal cord | en |
| dc.subject | pERK | en |
| dc.subject | depression | en |
| dc.subject | ASIC3 | en |
| dc.subject | hyperalgesia | en |
| dc.title | 慢性肌肉疼痛動物模式中之憂鬱相關行為和基因調控 | zh_TW |
| dc.title | Chronic Muscle Pain Associated Depression-Like Behavior and Gene Regulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝松蒼,閔明源,孫維欣 | |
| dc.subject.keyword | 肌肉,疼痛過敏化,第三型酸敏性離子通道,憂鬱,脊髓, | zh_TW |
| dc.subject.keyword | muscle,hyperalgesia,ASIC3,depression,pERK,spinal cord, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-12 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 4.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
