Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44066Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳復國 | |
| dc.contributor.author | Chih-Chun Lee | en |
| dc.contributor.author | 李季春 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:38:27Z | - |
| dc.date.available | 2011-08-17 | |
| dc.date.copyright | 2009-08-17 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-12 | |
| dc.identifier.citation | [1]M. Borsutzki, D. Cornette, Y. Kuriyama, A. Uenishi and B. Yan, “Recommendations for dynamic tensile testing of sheet steels”, International Iron and Steel Institute, 2005.
[2]B. Yan, Y. Kuriyama, A. Uenishi, D. Cornette, M. Borsutzki and C. Wong, “Recommended practice for dynamic testing for sheet steels: development and round robin tests”, SAE Paper No. 2006-01-0120, 2006. [3]P.K.C. Wood, C.A. Schley, G.F. Smith, M. Buckley, I. McGregor and R. Bardenheier, “Characterising dynamic tensile mechanical properties of automotive material at high strain rate”, SAE Paper No. 2007-26-065, 2007. [4]P.K.C. Wood, C.A. Schley, M. Buckley and J. Smith, “An improved test procedure for measurement of dynamic tensile mechanical properties of automotive sheet steels”, SAE Paper No. 2007-01-0987, 2007. [5]R. Othman, P. Génie, G. Challita, F. Pasco and D. LeBreton, “A modified servo-hydraulic machine for testing intermediate strain-rates”, International Journal of Impact Engineering, Vol. 36, pp. 460-467, 2009. [6]S. Takagi, Y. Tokita, K. Sato, T. Shimizu, K. Hashiguchi, K. Ogawa, K. Mimura and S. Tanimura, “Stress-strain curves of high strength steel sheets at strain rates from 10-3 to 103/s obtained with various types of tensile testing machines”, SAE Paper No. 2005-01-0494, 2005. [7]D.M. Bruce, D.K. Matlock, J.G. Speer and A.K. De, “Assessment of the strain-rate dependent tensile properties of automotive sheet steels”, SAE Paper No. 2004-01-0507, 2004. [8]J.D. Campbell and W.G. Ferguson, “The temperature and strain-rate dependence of the shear strength of mild steel”, The Philosophical Magazine, Vol. 21, pp. 63-82, 1970. [9]J.D. Campbell, “Dynamic plasticity: macroscopic and microscopic aspects”, Materials Science and Engineering, Vol. 12, pp. 3-21, 1973. [10]W.J. Kang, S.S. Cho, H. Huh and D.T. Chung, “Identification of dynamic behavior of sheet metals for an auto-body with tension split hopkinson bar”, SAE Paper No. 98-10-10, 1998. [11]N. Peixinho, A. Pinho and N. Jones, “Determination of crash-relevant material properties for high-strength steels and constitutive equations”, SAE Paper No. 2002-01-2132, 2002. [12]K. Mahadevan, P. Liang and J. Fekete, “Effect of strain rate in full vehicle frontal crash analysis”, SAE Paper No. 2000-01-0625, 2000. [13]S. Xie, L. Xu, K. Fang and S.R. Wu, “Discussion on strain rate effects in numerical simulation of vehicle crash”, SAE Paper No. 2008-01-0504, 2008. [14]K. Xu, C. Wong, B. Yan and H. Zhu, “A high strain rate constitutive model for high strength steels”, SAE Paper No. 2003-01-0260, 2003. [15]H. Huh, “Dynamic tensile characteristics of TRIP-type and DP-type steel sheets for an auto-body”, International Journal of Mechanical Sciences, Vol. 50, pp. 918-931, 2008. [16]T.M. Link and B.M. Hance, “Effects of strain rate and temperature on the work hardening behavior of high strength sheet steels”, SAE Paper No. 2003-01-0516, 2003. [17]J. Qu, W. Dabboussi, J. Nemes, S. Yue and F. Hassani, “High strain rate deformation behavior of advanced high strength steels for automotive applications”, SAE Paper No. 2006-01-1430, 2006. [18]劉鎮洋, “高速荷載下不同鋼材之塑變行為研究”, 國立成功大學機械工程研究所博士論文, 2006. [19]古明昇, “溫度及應變率對316不銹鋼塑性變形之影響”, 國立台灣大學機械工程研究所碩士論文, 2001. [20]陳清源, “鋼料之溫度及應變率效應”, 國立台灣大學機械工程研究所碩士論文, 1993. [21]周建綱,“鐵鎳合金(Fe-2Ni)粉末冶金件之高速變形行為分析”, 國立成功大學機械工程研究所碩士論文, 2004. [22]黃晴玲, “高應變率變形下鋁合金顯微組織之變化”, 國立台灣大學機械工程研究所碩士論文, 1996. [23]LS-DYNA keyword manual V971, LSTC, 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44066 | - |
| dc.description.abstract | 材料在高應變率變形下其降伏強度以及抗拉強度等性質會與靜態變形有所不同,因此本論文主要即針對如何取得材料在高應變率變形下之應力應變曲線以及應變率之影響進行研究。
高應變率之試驗方法種類繁多,常見的主要以霍普金森桿法、直接撞擊法以及以伺服液壓系統進行試驗,其中又以伺服液壓系統較適合於應變率低於500s-1,而本論文選擇以伺服液壓系統進行試驗。 本論文使用荷重計以及黏貼應變規之方式以取得試驗之數據,隨著應變率之增高,荷重計之應力訊號震盪之現象隨之增大,因此討論其產生之原因,而應變規所取得之訊號較不受影響。本論文亦討論在試驗過程中工程應變率與試片之真實應變率之差異,而後使用Cowper-Symonds之經驗公式以描述材料在不同應變率下之應力應變曲線,以便於輸入有限元素軟體進行應變率影響之模擬分析。 最後使用CAE模擬分析在試驗過程中夾具之受力情形,以及對於試驗過程所產生之問題進行討論,並且以一液壓管件碰撞之問題為例探討有無考慮應變率之影響其結果之差異。 | zh_TW |
| dc.description.abstract | The finite element method has been widely applied to simulate the crashworthiness tests in the automotive industry. However, in the high strain-rate deformation, the yield strength and ultimate tensile strength of a material may be changed. In order to obtain accurate results, the stress-strain relations of the material in high strain rates are required for the simulations of the crashworthiness tests. There are various high strain-rate tests available to obtain the stress-strain relations, such as the split Hopkinson bar system, direct impact method, and servo hydraulic system. Each test method is applicable in certain strain-rate range. In the present study, the servo hydraulic system MTS819 was adopted to implement the high rate tests in a strain-rate range below 500s-1. The testing equipment including the machine frame, load cell, and data acquisition system was fine tuned first to make it suitable for the tests. As strain rate increasing, the amplitude of the stress vibration acquired from load cell increases. Hence, the efforts to determine the cause of the stress vibration and the remedy approaches were made. The actual strain rate measured in specimen during the test was considered. It was found that there is an acceleration zone in the beginning of the test. So it is important to determine when the strain rate comes to a constant strain rate. The stress-strain curves acquired from the experiments conducted in the present study were fitted by the Cowper-Symonds equation and then input to the finite element software for simulations. Through the finite element simulations, the actual strain rates in specimen and stress distributions in the grip during experiment were investigated. The finite element simulations were also performed to examine the strain rate effect on the impact of a hydro-formed engine cradle to a rigid wall. The experimental approach and the finite element simulations results obtained in the present study could be valuable references for the future researches in field of deformation on the high strain rates. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:38:27Z (GMT). No. of bitstreams: 1 ntu-98-R96522530-1.pdf: 1860316 bytes, checksum: cea97ad14a705c00db2554f87e53c791 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 目錄I
圖目錄IV 表目錄VIII 第一章 緒論1 1.1前言1 1.2研究動機2 1.3文獻回顧3 1.4研究方法6 1.5本文總覽7 第二章 高應變率試驗方法與試驗模式之建立9 2.1 材料塑性變形機構9 2.2 高應變率之試驗方法選擇13 2.2.1霍普金森桿法14 2.2.2直接衝擊法15 2.2.3伺服液壓試驗法16 2.2.4高應變率試驗方法之比較16 2.3試驗儀器設備之使用規劃18 2.4試驗步驟之建立25 第三章 試驗結果及其影響因素之探討30 3.1 試驗之設置30 3.2試驗結果之探討32 3.2.1靜態試驗32 3.2.2 高應變率試驗 33 3.2.3 應變規擷取應力訊號41 3.2.4不同試片幾何尺寸之試驗結果46 3.3 工程應變率之適用性探討50 3.4 本構方程式(Constitutive Equation)53 3.4.1 靜態試驗之Ludwik 方程式53 3.4.2 Cowper-Symonds 本構方程式54 第四章 試驗以及應變率影響性之CAE分析探討57 4.1 有限元素模擬軟體簡介57 4.2 顯性積分法60 4.3 夾具受力分析63 4.3.1 有限元素模型建立63 4.3.2 材料性質與邊界條件之設定64 4.3.3 模擬結果68 4.3.4 新夾具之受力70 4.3.5 真實應變率74 4.4 液壓管碰撞模擬78 4.4.1有限元素模型建立78 4.4.2 模擬結果80 第五章 結論82 5.1研究結論82 5.2建議83 參考文獻84 | |
| dc.language.iso | zh-TW | |
| dc.subject | 經驗公式 | zh_TW |
| dc.subject | 高應變率試驗 | zh_TW |
| dc.subject | 伺服液壓系統 | zh_TW |
| dc.subject | 應力應變曲線 | zh_TW |
| dc.subject | high strain rate test | en |
| dc.subject | servo hydraulic system | en |
| dc.subject | stress-strain curve | en |
| dc.subject | strain rate effect | en |
| dc.subject | Cowper-Symonds equation | en |
| dc.title | 材料高速受力行為研究 | zh_TW |
| dc.title | A Study on Material Tests in High Strain Rates | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 向四海,洪景華,黃永茂 | |
| dc.subject.keyword | 高應變率試驗,伺服液壓系統,應力應變曲線,經驗公式, | zh_TW |
| dc.subject.keyword | high strain rate test,servo hydraulic system,stress-strain curve,Cowper-Symonds equation,strain rate effect, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| Appears in Collections: | 機械工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-98-1.pdf Restricted Access | 1.82 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
