Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44052
標題: 分散式系統之資源安置與排程
Resource Placement and Scheduling for Distributed Systems
作者: Yi-Fang Lin
林藝芳
指導教授: 劉邦鋒(Pangfeng Liu)
關鍵字: 分散式系統,網格計算,資源管理,
resource,placement,scheduling,distributed system,replica placement,I/O server,parallel I/O,multicast,I/O scheduling,up-down routing,Grid,
出版年 : 2009
學位: 博士
摘要: Applying distributed systems is a typical solution for data intensive applications to collect large computational power to handle the enormous data. To enhance overall performance of the distributed systems, we need to address two important groups of problems about how to manage the distributed resources. The first group is how to place the resources at the proper locations of the network to achieve load balance, and the second one is how to schedule the requests of the shared resources to reduce the overhead caused by the requests that share the same resources.
In the first problem group, we investigate the I/O server placement and data replica placement. Parallel I/O techniques can help solve the serious bottleneck of performance caused by I/O. However, switch-based clusters of workstations/PCs and distributed systems typically adopt
general topologies to allow the construction of scalable systems with incremental expansion capability. These general topologies lack many of the attractive mathematical properties of regular topologies, which
makes optimizing parallel I/O performance on general networks a difficult task. Therefore, we optimize server placement for parallel I/O in switch-Based clusters to balance the workload among the I/O servers. In addition, data replication is a typical strategy for improving access performance and data availability in distributed
systems with data intensive applications (especially in Data Grids). The existing works usually focus on the infrastructure for data replication and the mechanism of replicas creation and deletion, but the important problem of choosing suitable locations for placing replicas has not been fully studied. Thus, we also address replica
placement problem in Data Grids.
In the second problem group, we discuss parallel I/O scheduling and multicast scheduling. The lack of global information about I/O traffic between computing nodes and I/O servers impose new challenges in optimizing parallel I/O for distributed systems. Therefore, we develop
two distributed algorithms for parallel I/O scheduling with non-uniform data sizes. Moreover, multicast is an important communication pattern, with applications in collective communication operations, and the
bandwidth limitation of the links in the routing tree for general topologies make multicast scheduling critical. Thus, we propose an agent based multicast algorithm that guarantee contention free multicast by exploiting the properties of routing tree for general network.
Major contributions of this dissertation are summarized as follow. First, in I/O server placement, we formulate the problem as a weighted bipartite matching with the goal of balancing the workload on the I/O servers, and we propose an efficient algorithm to find an optimal solution. To minimize link contention among the subclusters connected
as a general topology, we devise a tree-based heuristic algorithm to assign servers among subclusters. Our simulation results demonstrate that our best algorithm is near-optimal in some cases. Second, in replica placement in a Data Grid, we propose a placement algorithm that
finds optimal locations for replicas so that the workload among the replicas is balanced, and we also propose an algorithm that determines the minimum number of replicas when the maximum workload capacity of each replica is given. Third, in parallel I/O scheduling problem, we
propose distributed scheduling algorithms, and our experimental results indicate that our algorithms yield parallel performance within 6% of the centralized solutions. We also compare the performance of our
algorithms with a distributed Highest Degree First method, which divides non-uniform data transfers into units of fixed-sized blocks. The experimental results show that our algorithms require less scheduling and data transfer time. Finally, in multicast scheduling for general networks, our experimental results demonstrate that our agent-based algorithm outperforms the most efficient algorithm reported
in existing literature.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44052
全文授權: 有償授權
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.62 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved