Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44050
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張鑫(Shin C. Chang)
dc.contributor.authorChung-Hsin Shihen
dc.contributor.author史宗鑫zh_TW
dc.date.accessioned2021-06-15T02:37:48Z-
dc.date.available2014-09-15
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-08-12
dc.identifier.citationAlter, H. J., R. H. Purcell, P. V. Holland, and H. Popper. 1978. Transmissible agent in non-A, non-B hepatitis. Lancet 1 (8062):459-463.
Appel, N., T. Pietschmann, and R. Bartenschlager. 2005. Mutational analysis of hepatitis C virus nonstructural protein 5A: potential role of differential phosphorylation in RNA replication and identification of a genetically flexible domain. J Virol 79 (5):3187-3194.
Appel, N., T. Schaller, F. Penin, and R. Bartenschlager. 2006. From structure to function: new insights into hepatitis C virus RNA replication. J Biol Chem 281 (15):9833-9836.
Bartenschlager, R., M. Frese, and T. Pietschmann. 2004. Novel insights into hepatitis C virus replication and persistence. Adv Virus Res 63:71-180.
Bartosch, B., and F. L. Cosset. 2006. Cell entry of hepatitis C virus. Virology 348 (1):1-12.
Bellis, S. L., J. T. Miller, and C. E. Turner. 1995. Characterization of tyrosine phosphorylation of paxillin in vitro by focal adhesion kinase. J Biol Chem 270 (29):17437-17441.
Borowski, P., M. Heiland, H. Feucht, and R. Laufs. 1999a. Characterisation of non-structural protein 3 of hepatitis C virus as modulator of protein phosphorylation mediated by PKA and PKC: evidences for action on the level of substrate and enzyme. Arch Virol 144 (4):687-701.
Borowski, P., K. Oehlmann, M. Heiland, and R. Laufs. 1997. Nonstructural protein 3 of hepatitis C virus blocks the distribution of the free catalytic subunit of cyclic AMP-dependent protein kinase. J Virol 71 (4):2838-2843.
Borowski, P., J. Schulze zur Wiesch, K. Resch, H. Feucht, R. Laufs, and H. Schmitz. 1999b. Protein kinase C recognizes the protein kinase A-binding motif of nonstructural protein 3 of hepatitis C virus. J Biol Chem 274 (43):30722-30728.
Boulant, S., C. Vanbelle, C. Ebel, F. Penin, and J. P. Lavergne. 2005. Hepatitis C virus core protein is a dimeric alpha-helical protein exhibiting membrane protein features. J Virol 79 (17):11353-11365.
Calalb, M. B., T. R. Polte, and S. K. Hanks. 1995. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol 15 (2):954-963.
Calalb, M. B., X. Zhang, T. R. Polte, and S. K. Hanks. 1996. Focal adhesion kinase tyrosine-861 is a major site of phosphorylation by Src. Biochem Biophys Res Commun 228 (3):662-668.
Cance, W. G., J. E. Harris, M. V. Iacocca, E. Roche, X. Yang, J. Chang, S. Simkins, and L. Xu. 2000. Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes. Clin Cancer Res 6 (6):2417-2423.
Carrere-Kremer, S., C. Montpellier-Pala, L. Cocquerel, C. Wychowski, F. Penin, and J. Dubuisson. 2002. Subcellular localization and topology of the p7 polypeptide of hepatitis C virus. J Virol 76 (8):3720-3730.
Chang, S. C., J. C. Cheng, Y. H. Kou, C. H. Kao, C. H. Chiu, H. Y. Wu, and M. F. Chang. 2000. Roles of the AX(4)GKS and arginine-rich motifs of hepatitis C virus RNA helicase in ATP- and viral RNA-binding activity. J Virol 74 (20):9732-9737.
Cooper, J. A., K. L. Gould, C. A. Cartwright, and T. Hunter. 1986. Tyr527 is phosphorylated in pp60c-src: implications for regulation. Science 231 (4744):1431-1434.
de Chassey, B., V. Navratil, L. Tafforeau, M. S. Hiet, A. Aublin-Gex, S. Agaugue, G. Meiffren, F. Pradezynski, B. F. Faria, T. Chantier, M. Le Breton, J. Pellet, N. Davoust, P. E. Mangeot, A. Chaboud, F. Penin, Y. Jacob, P. O. Vidalain, M. Vidal, P. Andre, C. Rabourdin-Combe, and V. Lotteau. 2008. Hepatitis C virus infection protein network. Mol Syst Biol 4:230.
Deleersnyder, V., A. Pillez, C. Wychowski, K. Blight, J. Xu, Y. S. Hahn, C. M. Rice, and J. Dubuisson. 1997. Formation of native hepatitis C virus glycoprotein complexes. J Virol 71 (1):697-704.
Deng, L., M. Nagano-Fujii, M. Tanaka, Y. Nomura-Takigawa, M. Ikeda, N. Kato, K. Sada, and H. Hotta. 2006. NS3 protein of Hepatitis C virus associates with the tumour suppressor p53 and inhibits its function in an NS3 sequence-dependent manner. J Gen Virol 87 (Pt 6):1703-1713.
Egger, D., B. Wolk, R. Gosert, L. Bianchi, H. E. Blum, D. Moradpour, and K. Bienz. 2002. Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol 76 (12):5974-5984.
Evans, M. J., C. M. Rice, and S. P. Goff. 2004. Phosphorylation of hepatitis C virus nonstructural protein 5A modulates its protein interactions and viral RNA replication. Proc Natl Acad Sci U S A 101 (35):13038-13043.
Failla, C., L. Tomei, and R. De Francesco. 1994. Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. J Virol 68 (6):3753-3760.
Feinstone, S. M., A. Z. Kapikian, R. H. Purcell, H. J. Alter, and P. V. Holland. 1975. Transfusion-associated hepatitis not due to viral hepatitis type A or B. N Engl J Med 292 (15):767-770.
Feng, D. Y., Y. Sun, R. X. Cheng, X. M. Ouyang, and H. Zheng. 2005. Effect of hepatitis C virus nonstructural protein NS3 on proliferation and MAPK phosphorylation of normal hepatocyte line. World J Gastroenterol 11 (14):2157-2161.
Franck, N., J. Le Seyec, C. Guguen-Guillouzo, and L. Erdtmann. 2005. Hepatitis C virus NS2 protein is phosphorylated by the protein kinase CK2 and targeted for degradation to the proteasome. J Virol 79 (5):2700-2708.
Frisch, S. M., and H. Francis. 1994. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124 (4):619-626.
Frisch, S. M., K. Vuori, E. Ruoslahti, and P. Y. Chan-Hui. 1996. Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 134 (3):793-799.
Fujita, T., S. Ishido, S. Muramatsu, M. Itoh, and H. Hotta. 1996. Suppression of actinomycin D-induced apoptosis by the NS3 protein of hepatitis C virus. Biochem Biophys Res Commun 229 (3):825-831.
Gilmore, A. P. 2005. Anoikis. Cell Death Differ 12 Suppl 2:1473-1477.
Glenney, J. R., Jr., and L. Zokas. 1989. Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton. J Cell Biol 108 (6):2401-2408.
Golubovskaya, V., A. Kaur, and W. Cance. 2004. Cloning and characterization of the promoter region of human focal adhesion kinase gene: nuclear factor kappa B and p53 binding sites. Biochim Biophys Acta 1678 (2-3):111-125.
Golubovskaya, V. M., and W. G. Cance. 2007. Focal adhesion kinase and p53 signaling in cancer cells. Int Rev Cytol 263:103-153.
Golubovskaya, V. M., R. Finch, and W. G. Cance. 2005. Direct interaction of the N-terminal domain of focal adhesion kinase with the N-terminal transactivation domain of p53. J Biol Chem 280 (26):25008-25021.
Golubovskaya, V. M., R. Finch, F. Kweh, N. A. Massoll, M. Campbell-Thompson, M. R. Wallace, and W. G. Cance. 2008. p53 regulates FAK expression in human tumor cells. Mol Carcinog 47 (5):373-382.
Griffin, S., D. Clarke, C. McCormick, D. Rowlands, and M. Harris. 2005. Signal peptide cleavage and internal targeting signals direct the hepatitis C virus p7 protein to distinct intracellular membranes. J Virol 79 (24):15525-15536.
Griffin, S. D., L. P. Beales, D. S. Clarke, O. Worsfold, S. D. Evans, J. Jaeger, M. P. Harris, and D. J. Rowlands. 2003. The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett 535 (1-3):34-38.
Griffin, S. D., R. Harvey, D. S. Clarke, W. S. Barclay, M. Harris, and D. J. Rowlands. 2004. A conserved basic loop in hepatitis C virus p7 protein is required for amantadine-sensitive ion channel activity in mammalian cells but is dispensable for localization to mitochondria. J Gen Virol 85 (Pt 2):451-461.
Grossmann, J. 2002. Molecular mechanisms of 'detachment-induced apoptosis--Anoikis'. Apoptosis 7 (3):247-260.
Gu, J., M. Tamura, R. Pankov, E. H. Danen, T. Takino, K. Matsumoto, and K. M. Yamada. 1999. Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J Cell Biol 146 (2):389-403.
Hassan, M., H. Ghozlan, and O. Abdel-Kader. 2005. Activation of c-Jun NH2-terminal kinase (JNK) signaling pathway is essential for the stimulation of hepatitis C virus (HCV) non-structural protein 3 (NS3)-mediated cell growth. Virology 333 (2):324-336.
Hollinger, F. B., G. L. Gitnick, R. D. Aach, W. Szmuness, J. W. Mosley, C. E. Stevens, R. L. Peters, J. M. Weiner, J. B. Werch, and J. J. Lander. 1978. Non-A, non-B hepatitis transmission in chimpanzees: a project of the transfusion-transmitted viruses study group. Intervirology 10 (1):60-68.
Huang, H., B. M. Jedynak, and J. S. Bader. 2007. Where have all the interactions gone? Estimating the coverage of two-hybrid protein interaction maps. PLoS Comput Biol 3 (11):e214.
Hugle, T., F. Fehrmann, E. Bieck, M. Kohara, H. G. Krausslich, C. M. Rice, H. E. Blum, and D. Moradpour. 2001. The hepatitis C virus nonstructural protein 4B is an integral endoplasmic reticulum membrane protein. Virology 284 (1):70-81.
Ishido, S., and H. Hotta. 1998. Complex formation of the nonstructural protein 3 of hepatitis C virus with the p53 tumor suppressor. FEBS Lett 438 (3):258-262.
Kameyama, M., F. Hofmann, and W. Trautwein. 1985. On the mechanism of beta-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflugers Arch 405 (3):285-293.
Kiyokawa, E., Y. Hashimoto, S. Kobayashi, H. Sugimura, T. Kurata, and M. Matsuda. 1998. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev 12 (21):3331-3336.
Kmiecik, T. E., and D. Shalloway. 1987. Activation and suppression of pp60c-src transforming ability by mutation of its primary sites of tyrosine phosphorylation. Cell 49 (1):65-73.
Kornberg, L. J. 1998. Focal adhesion kinase expression in oral cancers. Head Neck 20 (7):634-639.
Kou, Y. H., M. F. Chang, Y. M. Wang, T. M. Hung, and S. C. Chang. 2007. Differential requirements of NS4A for internal NS3 cleavage and polyprotein processing of hepatitis C virus. J Virol 81 (15):7999-8008.
Kwun, H. J., E. Y. Jung, J. Y. Ahn, M. N. Lee, and K. L. Jang. 2001. p53-dependent transcriptional repression of p21(waf1) by hepatitis C virus NS3. J Gen Virol 82 (Pt 9):2235-2241.
Lamb, N. J., A. Fernandez, J. R. Feramisco, and W. J. Welch. 1989. Modulation of vimentin containing intermediate filament distribution and phosphorylation in living fibroblasts by the cAMP-dependent protein kinase. J Cell Biol 108 (6):2409-2422.
Lim, S. T., X. L. Chen, Y. Lim, D. A. Hanson, T. T. Vo, K. Howerton, N. Larocque, S. J. Fisher, D. D. Schlaepfer, and D. Ilic. 2008. Nuclear FAK promotes cell proliferation and survival through FERM-enhanced p53 degradation. Mol Cell 29 (1):9-22.
Lundin, M., M. Monne, A. Widell, G. Von Heijne, and M. A. Persson. 2003. Topology of the membrane-associated hepatitis C virus protein NS4B. J Virol 77 (9):5428-5438.
Maekawa, M., T. Ishizaki, S. Boku, N. Watanabe, A. Fujita, A. Iwamatsu, T. Obinata, K. Ohashi, K. Mizuno, and S. Narumiya. 1999. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285 (5429):895-898.
McCormack, S. J., S. E. Brazinski, J. L. Moore, Jr., B. A. Werness, and D. J. Goldstein. 1997. Activation of the focal adhesion kinase signal transduction pathway in cervical carcinoma cell lines and human genital epithelial cells immortalized with human papillomavirus type 18. Oncogene 15 (3):265-274.
McLauchlan, J. 2000. Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes. J Viral Hepat 7 (1):2-14.
Okada, M., and H. Nakagawa. 1989. A protein tyrosine kinase involved in regulation of pp60c-src function. J Biol Chem 264 (35):20886-20893.
Owens, L. V., L. Xu, G. A. Dent, X. Yang, G. C. Sturge, R. J. Craven, and W. G. Cance. 1996. Focal adhesion kinase as a marker of invasive potential in differentiated human thyroid cancer. Ann Surg Oncol 3 (1):100-105.
Pallaoro, M., A. Lahm, G. Biasiol, M. Brunetti, C. Nardella, L. Orsatti, F. Bonelli, S. Orru, F. Narjes, and C. Steinkuhler. 2001. Characterization of the hepatitis C virus NS2/3 processing reaction by using a purified precursor protein. J Virol 75 (20):9939-9946.
Parsons, J. T., K. H. Martin, J. K. Slack, J. M. Taylor, and S. A. Weed. 2000. Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene 19 (49):5606-5613.
Pileri, P., Y. Uematsu, S. Campagnoli, G. Galli, F. Falugi, R. Petracca, A. J. Weiner, M. Houghton, D. Rosa, G. Grandi, and S. Abrignani. 1998. Binding of hepatitis C virus to CD81. Science 282 (5390):938-941.
Ray, R. B., and R. Ray. 2001. Hepatitis C virus core protein: intriguing properties and functional relevance. FEMS Microbiol Lett 202 (2):149-156.
Recher, C., L. Ysebaert, O. Beyne-Rauzy, V. Mansat-De Mas, J. B. Ruidavets, P. Cariven, C. Demur, B. Payrastre, G. Laurent, and C. Racaud-Sultan. 2004. Expression of focal adhesion kinase in acute myeloid leukemia is associated with enhanced blast migration, increased cellularity, and poor prognosis. Cancer Res 64 (9):3191-3197.
Roskoski, R., Jr. 2005. Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Commun 331 (1):1-14.
Sakamuro, D., T. Furukawa, and T. Takegami. 1995. Hepatitis C virus nonstructural protein NS3 transforms NIH 3T3 cells. J Virol 69 (6):3893-3896.
Sammak, P. J., S. R. Adams, A. T. Harootunian, M. Schliwa, and R. Y. Tsien. 1992. Intracellular cyclic AMP not calcium, determines the direction of vesicle movement in melanophores: direct measurement by fluorescence ratio imaging. J Cell Biol 117 (1):57-72.
Santolini, E., G. Migliaccio, and N. La Monica. 1994. Biosynthesis and biochemical properties of the hepatitis C virus core protein. J Virol 68 (6):3631-3641.
Scarselli, E., H. Ansuini, R. Cerino, R. M. Roccasecca, S. Acali, G. Filocamo, C. Traboni, A. Nicosia, R. Cortese, and A. Vitelli. 2002. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 21 (19):5017-5025.
Schaller, M. D., C. A. Borgman, B. S. Cobb, R. R. Vines, A. B. Reynolds, and J. T. Parsons. 1992. pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci U S A 89 (11):5192-5196.
Schaller, M. D., J. D. Hildebrand, J. D. Shannon, J. W. Fox, R. R. Vines, and J. T. Parsons. 1994. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol 14 (3):1680-1688.
Schaller, M. D., and J. T. Parsons. 1995. pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol Cell Biol 15 (5):2635-2645.
Schlaepfer, D. D., S. K. Hanks, T. Hunter, and P. van der Geer. 1994. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372 (6508):786-791.
Schlaepfer, D. D., and T. Hunter. 1996. Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases. Mol Cell Biol 16 (10):5623-5633.
Schlaepfer, D. D., S. K. Mitra, and D. Ilic. 2004. Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim Biophys Acta 1692 (2-3):77-102.
Seeger, C. 2005. Salient molecular features of hepatitis C virus revealed. Trends Microbiol 13 (11):528-534.
Shoji, I., T. Suzuki, M. Sato, H. Aizaki, T. Chiba, Y. Matsuura, and T. Miyamura. 1999. Internal processing of hepatitis C virus NS3 protein. Virology 254 (2):315-323.
Siavoshian, S., J. D. Abraham, M. P. Kieny, and C. Schuster. 2004. HCV core, NS3, NS5A and NS5B proteins modulate cell proliferation independently from p53 expression in hepatocarcinoma cell lines. Arch Virol 149 (2):323-336.
Tai, C. L., W. K. Chi, D. S. Chen, and L. H. Hwang. 1996. The helicase activity associated with hepatitis C virus nonstructural protein 3 (NS3). J Virol 70 (12):8477-8484.
Tellinghuisen, T. L., and C. M. Rice. 2002. Interaction between hepatitis C virus proteins and host cell factors. Curr Opin Microbiol 5 (4):419-427.
Tremblay, L., W. Hauck, A. G. Aprikian, L. R. Begin, A. Chapdelaine, and S. Chevalier. 1996. Focal adhesion kinase (pp125FAK) expression, activation and association with paxillin and p50CSK in human metastatic prostate carcinoma. Int J Cancer 68 (2):164-171.
Wilson, J. G. 1975. Reproduction and teratogenesis: current methods and suggested improvements. J Assoc Off Anal Chem 58 (4):657-667.
Wolk, B., D. Sansonno, H. G. Krausslich, F. Dammacco, C. M. Rice, H. E. Blum, and D. Moradpour. 2000. Subcellular localization, stability, and trans-cleavage competence of the hepatitis C virus NS3-NS4A complex expressed in tetracycline-regulated cell lines. J Virol 74 (5):2293-2304.
Xu, L. H., X. Yang, C. A. Bradham, D. A. Brenner, A. S. Baldwin, Jr., R. J. Craven, and W. G. Cance. 2000. The focal adhesion kinase suppresses transformation-associated, anchorage-independent apoptosis in human breast cancer cells. Involvement of death receptor-related signaling pathways. J Biol Chem 275 (39):30597-30604.
Yang, S. H., C. G. Lee, M. K. Song, and Y. C. Sung. 2000. Internal cleavage of hepatitis C virus NS3 protein is dependent on the activity of NS34A protease. Virology 268 (1):132-140.
Zemel, R., S. Gerechet, H. Greif, L. Bachmatove, Y. Birk, A. Golan-Goldhirsh, M. Kunin, Y. Berdichevsky, I. Benhar, and R. Tur-Kaspa. 2001. Cell transformation induced by hepatitis C virus NS3 serine protease. J Viral Hepat 8 (2):96-102.
Zhai, J., H. Lin, Z. Nie, J. Wu, R. Canete-Soler, W. W. Schlaepfer, and D. D. Schlaepfer. 2003. Direct interaction of focal adhesion kinase with p190RhoGEF. J Biol Chem 278 (27):24865-24873.
Zhang, Z. X., A. Sonnerborg, and M. Sallberg. 1994. A cell-binding Arg-Gly-Asp sequence is present in close proximity to the major linear antigenic region of HCV NS3. Biochem Biophys Res Commun 202 (3):1352-1356.
Zheng, X. M., R. J. Resnick, and D. Shalloway. 2000. A phosphotyrosine displacement mechanism for activation of Src by PTPalpha. EMBO J 19 (5):964-978.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44050-
dc.description.abstractC型肝炎病毒 (Hepatitis C virus)為正向單股RNA病毒,在進入細胞之後可利用其正股RNA基因體直接轉譯成多蛋白質 (polyprotein),再經由細胞內部的胜肽酶 (peptidase)以及病毒自身的蛋白酶 (protease)切割成具有不同功能的結構性蛋白質以及非結構性蛋白質。非結構性蛋白質NS3,全長631個胺基酸,具有蛋白酶和RNA解旋酶 (RNA helicase)的活性;在病毒複製的過程中,主要扮演將多蛋白質切割成各個蛋白質單元以及幫助解開雙股RNA的功能。在先前的研究中,發現C型肝炎病毒基因型1b 的NS3蛋白質具有內部截切 (internal cleavage)的活性,又以IPT402︱S為主要的截切位點。相較於NS3全長蛋白質,內部截切後的N端產物NS3(1-402)蛋白質,具有較強的細胞轉型能力 (transforming activity)。先前的研究亦發現NS3蛋白質具有加快細胞生長、使細胞能在低血清環境下生長的能力。在穩定表現的HepG2細胞中,NS3可活化JNK以及MAPK訊息傳遞。為了要進一步瞭解NS3在C型肝炎病毒致病機轉上的角色,本研究一方面利用tandem affinity purification的系統分析可以和NS3(1-402)共同純化的細胞因子。另一方面,利用短暫轉染和酵母菌雙雜合系統,探討NS3對細胞凋亡與focal adhesion訊息傳遞的影響。結果發現NS3(1-402)可以降低anoikis形式的細胞凋亡,並可以造成Huh-7細胞內部FAK蛋白質量的上升。另外NS3(1-402)會提高293細胞中focal adhesion訊息傳遞路徑上c-src(Y418)以及paxillin(Y118)磷酸化的程度。推測NS3蛋白質可能藉由N端的區域活化focal adhesion訊息傳遞來造成細胞轉型。zh_TW
dc.description.abstractHepatitis C virus is a positive-sense single-stranded RNA virus. After entry into cells, the virus synthesizes its polyprotein precursor from the viral genomic RNA. The polyprotein precursor can be further processed by cellular peptidase and viral proteases into different structural and nonstructural proteins. The nonstructural protein 3 (NS3) consists of 631 amino acids and possesses protease and RNA helicase activities. The NS3 protein plays major roles in the polyprotein processing and RNA unwinding during viral multiplication. In pervious studies, NS3 protein of genotype 1b was found to have internal cleavage activity, and IPT402|S is the major cleavage site. The N-terminal cleavage product, NS3(1-402) has a higher transforming activity than that of the full length NS3 protein. Studies also demonstrated an enhanced growth rate and ability to grow at low concentration of serum in the presence of NS3. In addition, JNK and MAPK signaling pathways were activated in HepG2 cells stably expressing NS3. Recent studies also suggest an association of focal adhesion with tumor formation. Towards understanding the roles of NS3 in the pathogenesis of HCV, tandem affinity purification system was used to analyze cellular factors that interact with NS3(1-402). On the other hand, transient transfection and yeast-two hybrid experiments were performed to examine the effects of NS3 on cell apoptosis and focal adhesion signaling. The results demonstrated a decrease of anoikis apoptosis and a slightly increased level of FAK in Huh-7 cells expressing NS3(1-402). In addition, NS3(1-402) protein enhanced the phosphorylation of both c-src(Y418) and paxillin(Y118) in 293 cells. Taken together, these results suggest that the N-terminal domain of HCV NS3 protein may interfere focal adhesion signaling. Activation of focal adhesion signaling pathway may correlate with the transforming activity of NS3 protein.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:37:48Z (GMT). No. of bitstreams: 1
ntu-98-R96445123-1.pdf: 2007048 bytes, checksum: e1e419ef3dfcba5cd6e18ac3950d65a4 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents研究方向.............................................................................................................13
材料與方法.........................................................................................................14
一、藥品........................................................................................................14
二、酵素........................................................................................................15
三、抗體........................................................................................................15
四、細胞培養液及轉染試劑............................................................................16
五、套裝試劑.................................................................................................16
六、其他.........................................................................................................17
七、細胞株.....................................................................................................17
八、實驗室提供的質體...................................................................................17
九、質體的構築.............................................................................................19
十、聚合酶連鎖反應 (Polymerase chain reaction, PCR)………..……..……21
十一、DNA接合 (Ligation).............................................................................21
十二、DNA轉型 (Transformation) ................................................................21
十三、DNA轉染 (DNA transfection)..............................................................22
十四、Tandem affinity purification………………….....…………………………22
十五、蛋白質定量...........................................................................................23
十六、正十二烷硫酸鈉-聚丙醯胺板電泳 (SDS-polyacrylamide gel
electrophoresis, SDS-PAGE)..........................................................23
十七、西方墨點法 (Western blot analysis)....................................................24
十八、酵母菌轉型 (Yeast transformation)與酵母菌雙雜合 (Yeast
two-hybrid)………………...................................................................25
十九、Anoikis細胞凋亡實驗……………………………..……………………….27
二十、流式細胞儀分析 (Flow cytometry)..….……….………………………28
結果…………………………………………………………….………………………29
一、建立Tandem affinity purification系統以及蛋白質純化…….….......………29
二、Integrin-beta1、parvin、zyxin酵母菌雙雜合實驗………………..………29
三、293細胞的anoikis細胞凋亡…………………………………………….…..30
四、NS3蛋白質及其片段在Huh-7以及293細胞表現情形…………..………..31
五、p53蛋白質在NS3相關片段轉染293細胞表現情形………….……………31
六、FAK蛋白質在293以及Huh-7細胞內部的表現情形………………………32
七、NS3蛋白質對paxillin蛋白質Tyr118位置磷酸化的影響……………….32
八、src蛋白質在表現NS3蛋白質的293細胞內部的表現情形………………..32
討論…………………………………………………………………………….………34
一、酵母菌雙雜合實驗結果……………………………………………….………34
二、NS3蛋白質在不同細胞內表現的情形………………………………...…….34
三、造成FAK蛋白質增加以及focal adhesion訊息傳遞活化的可能機制..….34
四、活化ERK以及JNK訊息傳遞路徑…………………………………….……..36
五、Focal adhesion訊息傳遞在293以及Huh-7細胞的差異…..…….……..36
圖表…………………………………………………………………………………….38
參考文獻…………………………………………...……………...…………………..48
dc.language.isozh-TW
dc.subject焦點黏著訊息傳遞zh_TW
dc.subject細胞轉型zh_TW
dc.subjectNS3蛋白質zh_TW
dc.subjectC型肝炎病毒zh_TW
dc.subject黏著斑訊息傳遞zh_TW
dc.subjectfocal adhesionen
dc.subjectNS3en
dc.subjectHCVen
dc.subjecttransforming activityen
dc.titleC型肝炎病毒NS3蛋白質對焦點黏著訊息傳遞之調控zh_TW
dc.titleRegulation of Focal Adhesion Signaling by the NS3 Protein of Hepatitis C Virusen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳美如(M.R. Chen),林淑華(S.W. Lin)
dc.subject.keywordC型肝炎病毒,NS3蛋白質,細胞轉型,焦點黏著訊息傳遞,黏著斑訊息傳遞,zh_TW
dc.subject.keywordHCV,NS3,transforming activity,focal adhesion,en
dc.relation.page55
dc.rights.note有償授權
dc.date.accepted2009-08-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved