請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44018完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林?輝(Feng-Huei Lin) | |
| dc.contributor.author | Jian-Yuan Huang | en |
| dc.contributor.author | 黃建元 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:36:29Z | - |
| dc.date.available | 2011-08-19 | |
| dc.date.copyright | 2009-08-19 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-13 | |
| dc.identifier.citation | 1. L.-M. Houdebine, Production of pharmaceutical proteins by transgenic animals, Comp Immunol Microbiol Infect Dis,32,107-121, 2009
2. W. A. Kues, H. Niemann, The contribution of farm animals to human health, TRENDS in Biotechnology, 22(6), 286-294, 2004. 3. S. G. Lillico, Transgenic chickens as bioreactors for protein-based drugs.Drugs Discovery Today, 10(3) , 191-196, 2005. 4.沈朋志, 動物基因轉殖, 科學發展, 372期, 2003年12月, 24-29 5. S. R. Barnum, Biotechnology an Introduction 2E, Thomson Learning TM, 2006 6. K.Takahashi et al, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell, 126, 663-676, 2006 7.L. Naldini et al, In Vivo Gene Delivery and Stable Transduction of Nondividing Cells by a Lentiviral Vector, 272, 263-267, 1996 8. 杜寶恒, 基因治療原理與應用, 97~126, 2001 9. D. Bouard et al, Viral vectors: from virology to transgene expression, British Journal of Pharmacology, 1–13, 2008 10. T. Niidome et al, Gene Therapy Progress and Prospects : Nonviral vectors, 9, 1647-1652, 2002 11. H. Herweijer et al, Progress and prospects: naked DNA gene transfer and therapy, Gene Therapy, 10, 453–458, 2003 12. J. Zabner et al, Cellular And Molecular Barriers To Gene-Transfer By A Cationic Lipid, Journal Of Biological Chemistry, 270, 18997-19007, 1995 13. O. Joachim et al, Structure of DNA-Cationic Liposome Complexes: DNA Intercalation in Multilamellar Membranes in Distinct Interhelical Packing Regimes, Science, 275, 810-814, 1997 14. A.Maitra, Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy, Expert Review of Molecular Diagnostics, 5(6), 893-905, 2005 15. M. Jordan et al, Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitateformation, Nucleic Acids Research, 24, 596-601, 1996 16. C. Coester, et al, Gelatin namoparticles by two step desolvation – a new preparation method, surface modification and cell uptake, J. Microencapsul. 17, 187-193, 2000 17. K. Zwiorek et al, Gelatin nanoparticles as a new and simple gene delivery system. J Pharm Pharm Sci 7(4), 22-28,2005 18. G. Kaul et al, Tumor-Targeted Gene Delivery Using Poly(Ethylene Glycol)-Modified Gelatin Nanoparticles: In Vitro AndIn Vivo Studies, Pharm Res., 22(6), 951–961, 2005 19. M.R. kumar et al , Preparation and characterization of cationic PLGA nanospheres as DNA carriers, Biomaterials, 25, 1771-1777, 2004. 20. W.T. Godbey, Poly(ethylenimine) and its role in gene delivery, Journal of Controlled Release, 60, 149–160, 1999 21. M. Hai-Quan et al, Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency, Journal of Controlled Release, 70, 399–421, 2001 22. K. Kobayashi, et al, Drug Delivery : Principles and Application, Wiley & Sons, Inc, 305-319, 2005 23. D. Howell et al, Deoxyribonuclease II is a Lysosomal Barrier to Transfection, Molecular Therapy, 8, 957–963, 2003 24. Y. Tabata, et al, Protein release from gelatin matrices, Advanced Drug Delivery Reviews, 31, 287-301, 1998 25. A. Ethirajan et al, Synthesis and Optimization of Gelatin Nanoparticles Using the Miniemulsion Process, Biomacromolecules, 9, 2383–2389, 2008 26. B. Balthasar et al, Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes, Biomaterials, 26, 2723–2732, 2005 27. S. Azarmi et al, Optimization of a two-step desolvation method for preparing gelatin nanoparticles and cell uptake studies in 143B osteosarcoma cancer cells, J Pharm Pharmaceut Sci, 9(1), 124-132, 2006 28. J. Zillies et al, Evaluating gelatin based nanoparticles as a carrier system for double stranded oligonucleotides, J Pharm Pharmaceut Sci, 7(4), 17-21, 2004 29. V. Sokolovaa, et al, Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles, Biomaterials 27, 3147–3153, 2006 30. D. Oltona, et al, Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery: Influence of the synthesis parameters on transfection efficiency, Biomaterials, 28, 1267-1279, 2007 31. C. Pedraza et al, The importance of particle size and DNA condensation salt for calcium phosphate nanoparticle transfection, Biomaterials, 29, 3384–3392, 2008 32. S. Gratton et al, The effect of particle design on cellular internalization pathways, PNAS, 105(33), 11613–11618, 2008 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44018 | - |
| dc.description.abstract | 遺傳性的疾病造成某些病人無法藉由自體產生必要蛋白質,往往需透過體外給予醫藥蛋白方能維持正常的生理機能。不過目前許多醫藥蛋白價格昂貴且產量少萃取不易。使用微生物(如E.coli、酵母菌等)將外源基因嵌入進而培養萃取特用蛋白,該方法不能大量生產且某些蛋白質無法修飾直接供人體利用,須另外在處理,其過程繁瑣。所以學者利用高等哺乳類動物,做為基因轉殖動物以生產大量的醫藥蛋白,以哺乳類動物做為生物反應器生產醫藥蛋白為近年學者研究的重心。
而基因轉殖雞的研究上不僅培養子代的速率較哺乳類動物快,且雞蛋蛋白的成分較哺乳類動物的乳液單純,在萃取上便捷許多。所以利用基因轉殖雞做為製造蛋白質的生物反應器有許多的優勢在。 本研究利用正電荷改質之明膠/磷酸鈣奈米微粒做為基因載體,其粒徑分佈不超過1μm,有利於細胞吞噬。由電泳測試知該微粒能有效保護與包覆DNA能力,具有做為良好基因載體的優勢。在生物相容性測試中,正電荷改質之明膠/磷酸鈣奈米微粒比起市售之LipofectamineTM2000更為安全,且可達百分之四十的轉染效率。在雞胚轉染實驗中,可由被轉染第四天之雞胚利用共軛焦顯微鏡觀察到綠色螢光,證明正電荷改質之明膠/磷酸鈣奈米微粒具有良好的生物相容性與轉染能力,具有生產基因轉殖雞的潛力。 | zh_TW |
| dc.description.abstract | Due to the hereditary disease, some specific proteins cannot be synthesized for the maintenance of physiological function. The pharmaceutical proteins, prepared in recombinant bacteria, play an important role in the medical engineering. However, most of pharmaceutical proteins are expensive and the production rate is low. Additionally, the proteins prepared from bacteria are inactive or unstable in vivo since they cannot be matured by post-translational modifications. Therefore, the transgenic animal system is a promising bioreactor to produce active proteins having an appropriate biochemical structure.
The advantages of using transgenic chickens as bioreactors are the short incubation time, the high production rate, the sterilized contents of the egg, and the stable proteins in egg. Moreover, the contents of the proteins extracted from the hen’s egg compared with the milk from mammals are simpler. Therefore, the transgenic chickens have the potential to be an ideal bioreactor for the production of specific proteins in the future. In this study, the gelatin/calcium phosphate nanoparticles after the cationization can be used as gene carriers applied in the transgenic chickens. Because the particle size is smaller than 1um, it has more possibility for the cell uptake. Using electrophoresis enables to evaluate the DNA loading efficiency, and the result shows that the nanoparticles have ability to carry DNA and protect the DNA as well. The nanoparticles also have higher biocompatibility than the commercial product, LipofecamineTM2000. The transfection efficiency of the cationizated gelatin/CaP nanoparticles achieves at least 40%. In the animal study, it is found that the embryo emits green fluorescence protein observed by the fluorescence microscope after the fourth day of the experiment, so the cationizated gelatin/CaP nanoparticles have potential applied in transgenic chicken. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:36:29Z (GMT). No. of bitstreams: 1 ntu-98-R96548015-1.pdf: 12436914 bytes, checksum: e9514caf24015fa50be3305ba67ac00d (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要 I
英文摘要 II 目錄 IV 圖目錄 VII 表目錄 IX 第一章 前言 1 1-1 醫藥蛋白 1 1-2 基因轉殖動物 2 1-3 基因轉殖雞 4 1-4 基因轉染技術 5 1-4-1 顯微注射法 5 1-4-2 胚胎幹細胞植入法 6 1-4-3 反轉錄病毒感染法 7 1-5 基因遞送系統 8 1-5-1 病毒載體 8 1-5-2 非病毒載體 9 1-6 研究目的 12 第二章 理論基礎 13 2-1 基因載體進入細胞內的機制 13 2-2 明膠 15 2-3 明膠奈米微粒發展 16 2-4 磷酸鈣在基因載體上的發展 18 第三章 實驗方法 19 3-1 實驗儀器 19 3-2 實驗藥品 21 3-3 實驗流程及材料製備 23 3-3-1 實驗架構 23 3-3-2 明膠奈米微粒製備 24 3-3-3 明膠/磷酸鈣 - DNA微粒製備 26 3-4 材料分析、生物相容性測試與體內、體外實驗 28 3-4-1 質體大量萃取 28 3-4-2 粒徑與界面電位測量 29 3-4-4 穿透式電子顯微鏡分析 30 3-4-5 掃描式電子顯微鏡分析 30 3-4-6 原子力顯微鏡分析 31 3-4-7 DNA包覆率測試 31 3-4-8 電泳分析 32 3-4-9 WST – 1細胞活性測試 32 3-4-10 LDH細胞毒性測試 33 3-4-11 體外細胞轉染實驗 34 3-4-12 動物實驗 35 第四章 結果與討論 36 4-1 明膠/磷酸鈣奈米微粒之製備結果 36 4-1-1 DLS粒徑分析 36 4-1-2 傅立葉轉換紅外線光譜儀(FT-IR) 38 4-1-2 掃描式電子顯微鏡分析 39 4-1-3 原子力顯微鏡分析 40 4-1-4 穿透式電子顯微鏡分析 42 4-1-5 表面電位分析 45 4-2 包覆效率測試 47 4-3 奈米微粒保護核酸抵抗限制酶之電泳分析 48 4-3 生物相容性測試 50 4-4 體外細胞轉染實驗 52 4-5 動物實驗 59 第五章 結論 62 參考文獻 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 磷酸鈣 | zh_TW |
| dc.subject | 基因載體 | zh_TW |
| dc.subject | 基因轉殖雞 | zh_TW |
| dc.subject | 明膠 | zh_TW |
| dc.subject | gene carrier | en |
| dc.subject | calcium phosphate | en |
| dc.subject | gelatin | en |
| dc.subject | transgenic chicken | en |
| dc.title | 製備具正電修飾之明膠/磷酸鈣奈米微粒作為基因載體於基因轉殖雞之應用 | zh_TW |
| dc.title | The Preparation of Cationized Gelatin/Calcium Phosphate Nanoparticles as Gene Carrier for Transgenic Chicken | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳克紹,吳信志,沙達文(Subramaniam Sadhasivam) | |
| dc.subject.keyword | 基因載體,基因轉殖雞,明膠,磷酸鈣, | zh_TW |
| dc.subject.keyword | gene carrier,transgenic chicken,gelatin,calcium phosphate, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 12.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
