Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44000
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳復國
dc.contributor.authorWen-Chieh Shihen
dc.contributor.author施文傑zh_TW
dc.date.accessioned2021-06-15T02:35:46Z-
dc.date.available2012-08-17
dc.date.copyright2009-08-17
dc.date.issued2009
dc.date.submitted2009-08-13
dc.identifier.citation[1]W.F. Hosford and R.M. Caddell, “Metal forming mechanics and metallurgy”, Prentice Hall, 1983.
[2]D.K. Leu, “A simplified approach for evaluating bendability and springback in plastic bending of anisotropic sheet metals”, Journal of Materials Processing Technology, Vol. 66, pp. 9-17, 1997.
[3]L.C. Zhang, G. Lu and S.C. Leong, “V-shaped sheet forming by deformable punches”, Journal of Materials Processing Technology, Vol. 63, pp. 134-139, 1997.
[4]N. Soichiro, O. Kunio and N. Keisukei, “Proposal for reducing press working load and highly accurate evaluation of springback error in bending automobile sheet metal”, JSAE Review, Vol. 24, pp. 283-288, 2003.
[5]O. Tekaslan, U. Seker and A. Ozdemir, “Determining springback amount of steel sheet metal has 0.5 mm thickness in bending dies”, Material and Design, Vol. 27, pp. 251-258, 2006.
[6]T.A. Kals and R. Eckstein, “Miniaturization in sheet metal working”, Journal of Materials Processing Technology, Vol. 103, pp. 95-101, 2000.
[7]U. Engel and R. Eckstein, “Microforming-form basic research to its realization”, Journal of Materials Processing Technology, Vol. 125-126, pp. 35-44, 2002.
[8]M. Geiger, M. Kleiner, R. Eckstein, N. Tiesier and U. Engel, “Microforming”, Annals of The CIRP, Vol. 50, pp. 445-462, 2001.
[9]J.T. Gau, C. Principe and J. Wang, “An experimental study on size effects on flow stress and formability of aluminm and brass for microforming”, Journal of Materials Processing Technology, Vol. 184, pp. 42-46, 2007.
[10]J.S. Stolken and A.G. Evans, “A microbend test method for measuring the plasticity length scale”, Journal of Materials Processing Technology, Vol. 46, pp. 5109-5115, 1998.
[11]W.D. Nix and H. Gao, “Indentation size effects in crystalline materials: A law for strain gradient plasticity”, Journal of the Mechanics and Physics of Solids, Vol. 46, pp. 411-425, 1998.
[12]J.F. Michel and P. Picart, “Size effects on the constitutive behaviour for brass in sheet metal forming”, Journal of Materials Processing Technology, Vol. 141, pp. 439-446, 2003.
[13]U. Engel, “Tribology in microforming”, Wear, Vol. 260, pp. 265-273, 2006.
[14]U. Engel, A. Messner and N. Tiesler, “Cold forging of microparts-effect of miniaturization on friction”, Peoccedings of the 1st EASFORM Conference on Materials Forming, pp. 77-80, 1998.
[15]Buschhausen, K. Weinmann, J.Y. Lee and T. Altan, “Evaluation of lubrication and friction in cold forging using a double backward-extrusion Processing”, Journal of Materials Processing Technology, Vol. 33, pp. 95-108, 1992.
[16]L.V. Raulea, A.M. Goijaerts, L.E. Govaert and F.P.T. Baaijens, “Size effects in the processing of thin metal sheets”, Journal of Materials Processing Technology, Vol. 115, pp. 44-48, 2001.
[17]J.T. Gau, C. Principe and M. Yu, “Springback behavior of brass in micro sheet forming”, Journal of Materials Processing Technology, Vol. 191, pp. 7-10, 2007.
[18]W.D. Callister, “Materials science and engineering”, 2nd edition, 2002.
[19]C.J. Wang, D.B. Shan, J. Zhou, B. Guo and L.N. Sun, “Size effects of the cavity dimension on the microforming ability during coining process”, Journal of Materials Processing Technology, Vol. 117-118, pp. 256-259, 2007.
[20]F.K. Chen and J.W. Tsai, “A study of size effect in micro-forming with micro-hardness tests”, Journal of Materials Processing Technology, Vol. 117, pp. 146-149, 2006.
[21]F. Vollertsen, H.S. Niehoff and Z. Hu, “State of the art in micro forming”, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 1172-1179, 2006.
[22]L. Peng, F. Liu, J. Ni and X. Lai, “Size effects in thin sheet metal forming and its elastic-plastic constitutive model”, Material and Design, Vol. 28, pp. 1731-1736, 2007.
[23]T. Fulop, W.A.M. Brekelmans and M.G.D. Geers, “Size effects from grain statistics in ultra-thin metal sheets”, Journal of Materials Processing Technology, Vol. 174, pp. 223-238, 2006.
[24]S.W. Yang and J.E. Spruiell, “Cold-worked state and annealing behavior of austenitic stainless steel”, Journal of Materials Science, Vol. 17, pp. 677-690, 1982.
[25]王繼敏, “不銹鋼與金屬腐蝕”, 科技圖書股份有限公司, 1997.
[26]曾俊發, “尺寸效應於精微成形之基礎研究”, 國立台灣大學機械工程研究所碩士論文, 2002.
[27]丁永健, “金屬精微成形實驗規範之建立與尺寸效應機制之研究”, 國立台灣大學機械工程研究所碩士論文, 2005.
[28]Http://www.efunda.com/materials/alloys/stainless_steels/stainless.cfm.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44000-
dc.description.abstract隨著製造領域中微型化趨勢的不斷發展,微型電子之零組件需求量越來越大,其具有低成本、高生產效率、成形件強度高等優點。本研究將針對廣泛應用於電子通訊零組件之不同厚度不銹鋼(Stainless steel)301材料,進行薄板微彎曲成形之研究。
由於材料尺寸微小化後,其材料性質會隨尺寸效應(Size effect)而有所改變,因此傳統巨觀尺寸彎曲變形的研究模式不一定適用於精微彎曲(Micro-bending)之分析,因此,本研究蒐集了傳統沖壓彎曲成形之技術資料,並整合目前已發表之精微成形相關技術資料,歸納出精微沖壓彎曲成形之關鍵技術;本文先規劃針對不銹鋼材料微小化後之尺寸效應進行拉伸實驗及彎曲實驗分析,以取得精微尺寸之材料性質及彎曲回彈特性。至於材料之塑性變形則以CAE分析技術來觀察材料於厚度方向的應力分佈,並藉此來預估回彈後的角度,並與實驗作一比對驗證。本文亦針對各材料與製程參數,包括:材料尺寸、晶粒尺寸大小(Grain size)、彎曲R角、摩擦係數與成形方式,對回彈現象之影響進行探討。並透過微硬度實驗之觀察,以了解薄板於微彎曲後之硬度分布情形。藉由上述的研究,將可提升精微薄板彎曲成形技術,將沖壓元件薄型化,以掌握精微沖壓成形的關鍵技術。
zh_TW
dc.description.abstractWith the ongoing miniaturization in manufacture, there is a growing demand on micro products that have many advantages, such as lower cost, efficient mass production, higher strength, etc. Among the micro-productions, the micro-bending of thin stainless steel sheets has obtained a variety of applications in the IT industry.
Though the macro-bending process has been well-developed, the design concepts may not be directly applied to the micro-bending due to the size effect occurred in the micro-forming processes. In the present study, the micro-bending of 301 stainless steel sheets with different thicknesses was studied. A thorough literature survey regarding the macro-bending technology and the current development status of micro-bending was made first. In order to obtain the material properties of the miniaturized 301 sheets, the tensile tests were conducted. The bending tests were also performed to examine the effects of sheet size and grain size on the micro-bending processes. The size effects occurred in both the tensile tests and the bending tests were observed. The effects of the process parameters, such as tooling corner radii and friction condition, on the micro-bending of thin 301 sheets were studied as well in the present study by both the experimental approaches and the finite element analyses. The stress distributions calculated from the finite element simulations explained the deformation mechanics of the springback occurred in the micro-bending of thin steel sheets. And it is found that both the sheet size and the grain size, in addition to the process parameters, have significant effects on the springback phenomenon occurred in the micro-bending of 301 stainless steel sheets. The results obtained in the present study could be valuable references to the future researches on the micro-bending of other kinds of thin metal sheets.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:35:46Z (GMT). No. of bitstreams: 1
ntu-98-R96522525-1.pdf: 3621186 bytes, checksum: 7b0a67c72b6c63a5af1a700036ca8b6d (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄i
圖目錄iv
表目錄xii
第一章 緒論1
1.1 研究背景與目的 1
1.2 研究方法與步驟 2
1.3 文獻收集與整理歸納4
1.3.1 傳統彎曲成形資料整理4
1.3.2 精微彎曲成形資料整理5
1.4論文總覽11
第二章 材料機械性質試驗與尺寸效應分析13
2.1 材料的選取13
2.2 金相實驗15
2.2.1 材料熱處理與結晶控制15
2.2.2 金相觀察18
2.3 微薄板拉伸實驗 22
2.3.1 實驗設備22
2.3.2 實驗結果24
2.4 尺寸效應分析26
第三章 微薄板之摩擦係數探討 33
3.1 摩擦實驗設計33
3.2 表面粗糙度之量測36
3.3 潤滑劑之選擇38
3.4 實驗結果與討論 40
第四章 微薄板彎曲成形回彈實驗之尺寸效應分析6
4.1 實驗儀器設備介紹46
4.2 微薄板V型彎曲實驗之尺寸效應分析47
4.2.1 微薄板V型彎曲實驗設計與流程47
4.2.2 微薄板V型彎曲製程參數與尺寸效應分析49
4.3 微薄板U型彎曲實驗之尺寸效應分析57
4.3.1 微薄板U彎曲實驗設計與流程57
4.3.2 微薄板U型彎曲製程參數與尺寸效應分析59
第五章 微薄板彎曲成形之回彈機制探討68
5.1 有限元素軟體ABAQUS簡介68
5.2 微薄板彎曲回彈現象69
5.3 微薄板V型彎曲成形之模擬分析71
5.3.1 微薄板V型彎曲變形行為模擬分析71
5.3.2 微薄板V型彎曲製程參數對回彈之影響79
5.4 微薄板U型彎曲成形之模擬分析84
5.4.1 微薄板U型彎曲變形行為模擬分析84
5.4.2 微薄板U型彎曲製程參數對回彈之影響88
5.5 微薄板三點彎曲變形討論92
第六章 微觀組織對精微彎曲之影響97
6.1 表面塑性層97
6.2 微硬度實驗98
6.3 金相觀察102
第七章 結論106
參考文獻109
附錄113
dc.language.isozh-TW
dc.title不銹鋼薄板精微彎曲成形之研究zh_TW
dc.titleA Study on Micro Bending of Thin Stainless Steel Sheetsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee向四海,黃永茂,洪景華
dc.subject.keyword不銹鋼,精微彎曲,尺寸效應,回彈,晶粒尺寸大小,製程參數,CAE分析,實驗驗證,微硬度實驗,zh_TW
dc.subject.keyword301 stainless steel,micro-bending,size effect,springback,grain size,process parameters,finite element analysis,experiment verification,en
dc.relation.page118
dc.rights.note有償授權
dc.date.accepted2009-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
3.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved