Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43991
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor彭隆瀚
dc.contributor.authorHan-Min Wuen
dc.contributor.author巫漢敏zh_TW
dc.date.accessioned2021-06-15T02:35:24Z-
dc.date.available2014-08-19
dc.date.copyright2009-08-19
dc.date.issued2009
dc.date.submitted2009-08-13
dc.identifier.citation[1] J. Nelson, The Physics of Solar Cells (Imperial College Press, London, 2003), p. 73.
[2] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” Journal of Applied Physics 25, 676 (1954).
[3] R. R. King,D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, and H. Yoon, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90, 183516 (2007).
[4] http://www.olympusmicro.com/primer/lightandcolor/ledsintro.html
[5] Lighting Fair 2009: LED and organic EL pave the road to the future of illumination.
[6] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84, 855 (2004).
[7] Y. Kawaguchi, K. Nishizono, J.-S. Lee, and H. Katsuda, “Light extraction simulation of surface-textured light-emitting diodes by finite-difference time-domain method and ray-tracing method,” Japanese Journal of Applied Physics 46, 31 (2007).
[8] W. Huang, J.-T. Chu, C.-C. Kao, T.-H. Hseuh, T.-C. Lu, H.-C. Kuo, S.-C. Wang, and C.-C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology 16, 1844 (2005).
[9] T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, “III-nitride blue and ultraviolet photonic crystal light emitting diodes,” Appl. Phys. Lett. 84, 466 (2004).
[10] H. W. Choi, C. Liu, E. Gu, G. McConnell, J. M. Girkin, I. M. Watson, and M. D. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84, 2253 (2004).
[11] J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nature photonics 1, 176 (2007).
[12] D.-E. Nilsson, M. F. Land, and J. Howard, “Afocal apposition optics in butterfly eyes,” Nature 312, 561 (1984).
[13] J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, and G. Hendler, “Calcitic microlenses as part of the photoreceptor system in brittlestars,” Nature 412, 819 (2001).
[14] V. Welch, V. Lousse, O. Deparis, A. Parker, and J. P. Vigneron, “Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius (Curculionidae),” Physical Review E 75, 041919 (2007).
[15] P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852 (2003).
[16] D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B 273, 661 (2006).
[17] M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077 (1995).
[18] Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-Free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Letters 6, 1468 (2006).
[19] K. Jensen, J. Weldon, H. Garcia, and A. Zettl, “Nanotube Radio,” Nano Letters 7, 3508 (2007).
[20] http://www.physics.berkeley.edu/research/zettl/projects/nanoradio/radio.html
[21] J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M.-F. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nature Photonics 1, 176 (2007).
[22] R. V. Parthasarathy and C. R. Martin, “Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization,” Nature 369, 298 (1994).
[23] S. Y. Chou, M. S. Wei, P. R. Krauss, and P. B. Fischer, “Single-domain magnetic pillar array of 35 nm diameter and 65 Gbits/in.2 density for ultrahigh density quantum magnetic storage,” J. Appl. Phys. 76, 6673 (1994).
[24] T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406, 1027 (2000).
[25] H. I. Smith, and M. L. Schattenburg, “X-Ray-Lithography, From 500 to 30 nm - X-ray nanolithography,” IBM J. Res. DeV. 37, 319 (1993).
[26] C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599 (2001).
[27] H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41, 377 (1982).
[28] S. H. Park, B. Gates, and Y. Xia, “A three-dimensional photonic crystal operating in the visible region,” Adv. Mater. 11, 462 (1999).
[29] W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004).
[30] C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599 (2001).
[31] K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, D. L. Carnahan, D. Z. Wang, J. Y. Lao, W. Z. Li, and Z. F. Ren, “Photonic Crystals Based on Periodic Arrays of Aligned Carbon Nanotubes,” Nano Lett. 3, 13(2003)
[32] J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553 (1995).
[33] H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall Inc., New Jersey, 1984), p. 46.
[34] R. Agarwal and C. M. Lieber, “Semiconductor nanowires: optics and optoelectronics,” Appl. Phys. A: Mater. Sci. Process. 85, 209 (2006).
[35] A. V. Maslov, M. I. Bakunov, and C. Z. Ning, “Distribution of optical emission between guided modes and free space in a semiconductor nanowire,” J. Appl. Phys. 99, 024314 (2006).
[36] P. J. Pauzauskie, D. J. Sirbuly, and P. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96, 143903 (2006).
[37] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897 (2001).
[38] X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature (London) 421, 241 (2003).
[39] A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83, 1237 (2003).
[40] R. Hauschild and H. Kalt, “Guided modes in ZnO nanorods,” Appl. Phys. Lett. 89, 123107 (2006).
[41] K. J. Vahala, “Optical microcavities,” Nature (London) 424, 839 (2003).
[42] C. Meier, K. Hennessy, E. D. Haberer, R. Sharma, Y.-S. Choi, K. McGroddy, S. Keller, S. P. DenBaars, S. Nakamura, and E. L. Hu, “Visible resonant modes in GaN-based photonic crystal membrane cavities,” Appl. Phys. Lett. 88, 031111 (2006).
[43] L.-M. Chang, C.-H. Hou, Y.-C. Ting, C.-C. Chen, C.-L. Hsu, J.-Y. Chang, C.-C. Lee, G.-T. Chen, and J.-I. Chyi, “Laser emission from GaN photonic crystals,” Appl. Phys. Lett. 89, 071116 (2006).
[44] S. Chang, N. B. Rex, R. K. Chang, G. Chong, and L. J. Guido, “Stimulated emission and lasing in whispering-gallery modes of GaN microdisk cavities,” Appl. Phys. Lett. 75, 166 (1999).
[45] S. Keller, C. Schaake, N. A. Fichtenbaum, C. J. Neufeld, Y. Wu, K. McGroddy, A. David, S. P. DenBaars, C. Weisbuch, J. S. Speck, and U. K. Mishra, “Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi-quantum wells,” J. Appl. Phys. 100, 054314 (2006).
[46] S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2-D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41, 857 (2005).
[47] I. Braun, G. Ihlein, and F. Laeri, “Hexagonal microlasers based on organic dyes in nanoporous crystals,” Appl. Phys. B, 70, 335 (2000).
[48] A. K. Bhowmik, “Polygonal optical cavities,” Appl. Opt. 39, 3071 (2000).
[49] S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289 (1992).
[50] D. A. Stocker, E. F. Schubert, and J. M. Redwing, “Crystallographic wet chemical etching of GaN,” Appl. Phys. Lett. 73, 2654 (1998).
[51] C.-M. Lai, H.-M. Wu, P.-C. Huang, S.-L. Wang, and L.-H. Peng, “Single mode stimulated emission from prismlike gallium nitride submicron cavities,” Appl. Phys. Lett. 90, 141106 (2007).
[52] H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[53] L. Chen and E. Towe, “Coupled optoelectronic modeling and simulation of nanowire lasers,” J. Appl. Phys. 100, 044305 (2006).
[54] J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B. 127, 8816 (2003).
[55] S. Dey and R. Mittra, “Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Pade approximation,” IEEE Microw. Guid. Wave Lett. 8, 415 (1998).
[56] J. Mickevičius, G. Tamulaitis, M. S. Shur, Q. Fareed, J. P. Zhang, and R. Gaska, “Saturated gain in GaN epilayers studied by variable stripe length technique,” J. Appl. Phys. 99, 103513 (2006).
[57] A. K. Bhowmik, “Polygonal optical cavities,” Appl. Opt. 39, 3071 (2000).
[58] C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39 (2007).
[59] H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15, 415 (2007).
[60] H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, Bristol, 2001), p. 40.
[61] C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92, 061112 (2008).
[62] H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Exp. 15, 14793 (2007).
[63] K. Hadobás, S. Kirsch, A. Carl, M. Acet, and F. E. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotech. 11, 161 (2000).
[64] H.-M. Wu, C.-M. Lai, and L.-H. Peng, “Optical response from lens-like semiconductor nipple array,” Appl. Phys. Lett. 93, 211903 (2008).
[65] L.- H. Peng, Y.-P. Tseng, K.-L. Lin, Z.-X. Huang, C.-T. Huang, and A.-H. Kung, “Depolarization field mitigated domain engineering in nickel diffused lithium tentalate,” Appl Phys. Lett. 92, 092903 (2008).
[66] S. M. Sze, Physics of Semiconductor Devices (Central book company, Taipei, 1985), p. 70.
[67] S.-M. Pan, R.-C. Tu, Y.-M. Fan, R.-C. Yeh, and J.-T. Hsu, “Improvement of InGaN-GaN light-emitting diodes with surface-textured indium-tin-oxide transparent ohmic contacts,” IEEE Photonics Technol. Lett. 15, 649 (2003).
[68] P.-C. Chang, Z. Fan, C.-J. Chien, D. Stichtenoth, C. Ronning, and J. G. Lu, “High-performance ZnO nanowire field effect transistors,” Appl. Phys. Lett. 89, 133113 (2006).
[69] M.-C. Jeong, B.-Y. Oh, M.-H. Ham, and J.-M. Myoung, “Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes,” Appl. Phys. Lett. 88, 202105 (2006).
[70] S.-Y. Chua and T.-Y. Chen and W. Water, “Deposition of preferred-orientation ZnO films on the ceramic substratesand its application for surface acoustic wave filters,” J. Vac. Sci. Technol. A 22, 1087 (2004).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43991-
dc.description.abstract本論文發展自組小球顯影技術,即利用小球的自我排列特性,形成單層、雙層緊密排列的小球結構,達到顯影之目的。我們也使用繞射光學量測,得到高階的繞射模態光點與彩虹炫光,驗證我們已有鋪設大面積緊密排列的單層小球技術。
本文也完成氮化鎵三角柱共振腔之製作與光學特性量測。透過自組小球顯影、光致化學蝕刻與氫氧化鉀晶面削蝕製程的結合,製作非極性晶面之氮化鎵次微米三角柱,具有高品質平滑的晶面側壁。在266 nm雷射入射下,得到半高寬0.4 nm的單模共振放光,其Q值達1000以上,Gth約為 2 MW/cm2。搭配二維有限時域差分法的模擬,得到三角柱尺寸與模態波長關係圖,確認氮化鎵三角柱共振腔具備單一模態受激發光之特性,且三角柱晶面側壁的反射率R達到98%以上。

本研究在矽基板與氮化鎵基板上,結合自組小球技術與反應式離子蝕刻技術,製備具拋物面體形貌的週期0.35 um的亞波長透鏡陣列。在正面反射率之量測,450 nm至700 nm的可見光波段中,透鏡陣列的反射率皆小於3%。斜向入射量測中,於可見光波段400~800 nm間,在TE模式反射率維持在10%以下的訴求下,可容許的入射角達到45度;而在TM模式中反射率維持在2.5%以下的訴求下,可容許的入射角更廣達60度。
我們亦完成搭載透鏡陣列之矽基板光偵測元件的製作。在相同製程與照光強度下,光電元件搭載亞波長透鏡陣列後,可得到大角度寬頻的抗反射能力,元件效能得到約40%的提升。
而為了進一步利用折射係數匹配的特性,達成大角度寬頻譜範圍的抗反射表面結構,我們嘗試將具拋物面體形貌的矽基板0.35 um週期透鏡陣列作為濺鍍之基板,沉積不同厚度的氧化鋅薄膜,尋求折射係數的最佳匹配條件,以增強光電元件之效率。由實驗中得知,50 nm厚度的氧化鋅薄膜是目前最佳化的條件,在400~750 nm波段,得到小於1%的正面反射率表現;而在400~800 nm波段,斜向入射之量測結果顯示,TE模式之反射率在30度的斜向入射角之內,可將反射率維持在2.5%以下,TM模式之反射率在45度的斜向入射角之內,可將反射率維持在1%以下,充分展現氧化鋅/透鏡陣列表面結構的效能改善,得到更大角度之寬頻抗反射特性。
zh_TW
dc.description.abstractIn this dissertation, the colloidal lithography for casting close-packed distribution of self-assembled polystyrene spheres is demonstrated. High-order diffraction pattern and rainbow lines were observed due to close-packed spheres, showing the ordered-structure characteristics.
Single mode stimulated emission from optical pumping of prismlike gallium nitride (GaN) with a side length of 0.75 um is also reported. Using the self-assembled spheres as the mask, we applied the photo-enhanced etching and wet chemical etching to form prism-like GaN submicron cavities with nonpolar facet sidewalls. They were characterized by an average quality factor of above 1000 and an equivalent facet reflectivity of exceeding 98%, which allowed field amplification by repeated internal reflections in the transverse plane and field polarization along the c axis. These properties allow the observation of single mode stimulated emission by optical pumping the GaN prism at threshold intensity of 2 MW/cm2. A slight spectral blueshift of 0.35 nm and narrowing in linewidth of 0.4 nm were observed with the increase of pump intensity. These observations manifested resonant coupling of the band edge emission to a single mode of the prismlike GaN cavity.
Moreover, it is reported the use of recessive size reduction in self-assembled sphere mask with anisotropic etching to form lenslike nipple arrays onto the surface of silicon (Si) and GaN. These devices are shown to exhibit a filling factor near to an ideal close-packed condition and paraboloidlike etch profile with a slope increased proportionally to the device aspect ratio. Specular reflectivity of less than 3% was observed over the visible spectral range for the 0.35-um-period nipple lens arrays. The Si photodetector fabricated with nipple lens arrays exhibited a 40% enhancement in the photo-current measurement compared to the device without the nipple array.
In order to obtain a surface structure with fine-tuned refractive index matching effect and antireflection for wide incident angles over full visible spectrum, we further combined the nipple lens array structure with thin film coating of zinc oxide (ZnO) to seek the optimised surface structure showing the best antireflection effect. It was found that Si nipple array coated with 50-nm-thick ZnO could exhibit specular reflectivity less than 1% over the visible spectral range at vertical incident angle. In the oblique incidence measurements, the ZnO/lens array structure showed suppressed reflection below 2.5% for TE mode at incident angle of 30° and reflection below 1% for TM mode at incident angle of 45°, respectively, further confirming the improvement of antireflection effect on ZnO/lens array structure.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:35:24Z (GMT). No. of bitstreams: 1
ntu-98-D91941014-1.pdf: 10527723 bytes, checksum: 6fe8354c4a18d75ecbab2827e9c66823 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents第一章 1
前 言 1
1.1光電半導體元件 1
1.1.1太陽能電池 1
1.1.2發光二極體 4
1.1.3光電半導體之發展 5
1.2 面臨的技術挑戰 6
1.3 亞波長表面結構之發展與特性 8
1.4 研究之進行 11
第二章 12
自組小球顯影技術 12
2.1 奈米結構之技術需求 12
2.2自組小球顯影技術 13
2.3自組小球顯影技術之實施 16
2.3.1 小球旋轉塗佈法 17
2.3.2 靜置蒸發法 19
2.3.3 懸浮撈起法 20
2.4各方法鋪設小球之結果與討論 21
2.4.1 六角緊密排列小球結構 21
2.4.2小球鋪設之最大面積 23
2.5單層緊密排列小球之繞射光學量測 27
2.5.1 繞射原理簡述 27
2.5.2 實驗架構與繞射圖案 30
2.6結論 34
第三章 35
氮化鎵次微米三角柱共振腔之單模受激放光 35
3.1 半導體奈米共振腔結構 35
3.2 氮化鎵次微米三角柱共振腔之製程 38
3.2.1 自組PS小球製作蝕刻遮罩 38
3.2.2 光致化學蝕刻 40
3.2.3 氫氧化鉀的晶面削蝕 42
3.2.4 氮化鎵次微米三角柱共振腔 44
3.3 氮化鎵次微米三角柱共振腔之光學特性 45
3.3.1 光學量測系統與樣品結構 45
3.3.2 光學量測結果與討論 47
3.3.3 有限時域差分法模擬與討論 50
3.4 結論-氮化鎵次微米三角柱共振腔 53
第四章 54
亞波長透鏡陣列技術之製作與應用 54
4.1 表面週期結構之抗反射研究與應用 54
4.2 亞波長表面結構之特性分析 58
4.2.1 表面結構之深寬比 59
4.2.2 表面結構之披覆率 60
4.2.3 表面結構之形貌 62
4.3 亞波長透鏡陣列之製作 64
4.3.1 亞波長透鏡陣列製程之自組小球鋪設 64
4.3.2 亞波長透鏡陣列製程之塑形製程 66
4.4 亞波長透鏡陣列之形貌量測 69
4.4.1 深寬比、表面粗糙度、披覆率與形貌類型 69
4.4.2 PS小球的蝕刻形狀 72
4.5 亞波長透鏡陣列之光學特性量測 73
4.5.1 背向繞射 73
4.5.2 正向反射率 75
4.5.3 斜向反射率 77
4.6 亞波長透鏡陣列之光電半導體特性 81
4.6.1 亞波長透鏡陣列之矽基板光偵測元件之製作 81
4.6.2 亞波長透鏡陣列之矽基板光偵測元件之特性量測 84
4.7 結論-亞波長透鏡陣列 86
第五章 87
金屬氧化物/亞波長透鏡陣列結構特性研究 87
5.1金屬氧化物於半導體元件之應用 87
5.2氧化鋅/矽基板透鏡陣列結構之研究方法 90
5.3氧化鋅/矽基板透鏡陣列結構之特性研究 91
5.3.1 氧化鋅/矽基板透鏡陣列之形貌 91
5.3.2 氧化鋅/矽基板透鏡陣列之正面反射率分析 93
5.3.3 氧化鋅/矽基板透鏡陣列之斜向反射率分析 94
5.4結論-氧化鋅/矽基板透鏡陣列結構 96
第六章 97
結論與未來展望 97
參考文獻 100
dc.language.isozh-TW
dc.title亞波長透鏡陣列技術於光電半導體元件之應用zh_TW
dc.titleThe Applications of Subwavelength Semiconductor Lens-array for Optoelectronic Devicesen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee王維新,張宏鈞,胡振國,綦振瀛,賴聰賢,李文欽
dc.subject.keyword亞波長,透鏡陣列,抗反射表面結構,zh_TW
dc.subject.keywordSubwavelength,Lens array,Antireflection,en
dc.relation.page106
dc.rights.note有償授權
dc.date.accepted2009-08-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
10.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved