請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43968完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張宏鈞(Hung-Chun Chang) | |
| dc.contributor.author | Wen-Tsung Shang | en |
| dc.contributor.author | 商文聰 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:34:32Z | - |
| dc.date.available | 2011-08-18 | |
| dc.date.copyright | 2009-08-18 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-14 | |
| dc.identifier.citation | [1] Abdallah, T., S. Abdalla, S. Negm, and H. Talaat, Surface plasmons resonance technique for the detection of nicotine in cigarette smoke,' Sens. Actuators A: Phys., vol. 102, pp. 234-239, 2003.
[2] Atkinson, R., W. R. Hendren, G. A.Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, Anisotropic optical properties of arrays of gold nanorods embedded in alumina,' Phys. Rev. B, vol. 73, 235402, 2006. [3] Agio, M., and C. M. Soukoulis, Ministop bands in single-defect photonic crystal waveguides,' Phys. Rev. E, vol. 64, 055603, 2001. [4] Agranovich, V. M., and D. L. Mills, Surface polaritons: Electromagnetic waves at surfaces and interfaces. Amsterdam, MA: North-Holland, 1982. [5] Arens, T., and T. Hohage, On radiation conditions for rough surface scattering problems,' J. Appl. Math., vol. 70, pp. 839-847, 2005. [6] De Hoop, A. T., On the plane wave extinction cross-section of an obstacle,' Appl. Sci. Res., Section B, vol. 7, pp. 463-469, 1959. [7] Devaux, E., A. Dereux, E. Bourillot, J.Weeber, Y. Lacroute, and J. Goudonnet, Local detection of the optical magnetic field in the near zone of dielectric samples,' Phys. Rev. B, vol. 62, pp. 10504{10514, 2000. [8] Elghanian R., J. J. Storhoff, R . C. Mucic, R . L. Letsinger, and C. A. Mirkin, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,' Science, vol. 277, pp. 1078-1081, 1997. [9] Etchegoin, P. G., E. C. L. Ru, and M. Meyer, An analytic model for the optical properties of gold,' J. Chem. Phys., vol. 125, 164705, 2006. [10] Felbacq, D., G. Tayeb, and D. Maystre, Scattering by a random set of parallel cylinders,' J. Opt. Soc. Am. A, vol. 11, pp. 2526-2538, 1994. [11] Hao, F., P. Nordlander, E±cient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,' Chem. Phys. Lett., vol. 446, pp. 115-118, 2007. [12] Ho, K. M., C. T. Chan, and C. M. Soukoulis, Existence of photonic gap in periodic dielectric structures,' Phys. Rev. Lett., vol. 65, pp. 3152-3155, 1990. [13] Hulteen, J. C., D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. van Duyne, Nanosphere lithography: Size-tunable silver nanoparticles and surface cluster arrays,' J. Phys. Chem. B, vol. 103, pp. 3854-3863, 1999. [14] Johnson, P. B., and R. W. Christy, 'Optical Constants of the Noble Metals,' Phys. Rev. B, vol. 6, pp. 4370{4379, 1972. [15] Kneipp K., Y.Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Single molecule detection using surface-enhanced Raman scattering,' Phys. Rev. Lett., vol. 78, pp 1667-1670, 1997. [16] Kreibig, U., and M. Vollmer, Optical Properties of Metal Clusters. Berlin: Springer-Verlag, 1995. [17] Kottmann, J. P., and O. J. F. Martin, Plasmon resonant coupling in metallic nanowires,' Opt. Express, vol. 8, pp. 655-663, 2001. [18] Krauss, T. F., Planar photonic crystal waveguide devices for integrated optics,' Phys. Stat. Sol., vol. 197, pp. 688-702, 2003 [19] Laroche, M., S. Albaladejo, R. Gomez-Medina, and J. J. Saenz, Tuning the optical response of nanocylinder arrays: An analytical study,' Phys. Rev. B, vol. 74, 245422, 2006. [20] Laroche, T., and C. Girard, Near-field optical properties of single plasmonic nanowires,' Appl. Phys. Lett., vol. 89, 233119, 2006. [21] Leung, K. M., and Y. F. Liu, Full vector wave calculation of photonic band structure in face-centered-cubic dielectric media,' Phys. Rev. Lett., vol. 65, pp. 2646-2649, 1990. [22] Martin, P. A., Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles. Combridge, UK: Combridge University Press, 2006. [23] Meade, R. D., A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, Accurate theoretical analysis of photonic band-gap materials,' Phys. Rev. B, vol. 48, pp. 2772-2775, 1992. [24] Mekis, A., J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, High transmission through sharp bends in photonic crystal waveguides,' Phys. Rev. Lett., vol. 77, pp. 3787-3790, 1996. [25] Moreno, E., D. Erni, and C. Hafner, Band structure computations of metallic photonic crystals with the multiple multipole method,' Phys. Rev. B, vol. 65, 155120, 2002. [26] Moskovits, M., Surface-enhanced spectroscopy,' Rev. Mod. Phys., vol. 57, pp. 783-826, 1985. [27] Ohki, M., H. Sakurai, J. Horikoshi, and S. Kozaki, Electromagnetic beam wave scattering by arbitrary cross-sectional conducting cylinder using N circular cylindrical models,' Int. J. Infrared Millim. Waves, vol. 17, 1996. [28] Oubre, C., and P. Nordlander, Optical properties of metallodielectric nanos-tructures calculated using the ‾nite di®erence time domain method,' J. Phys. Chem. B, vol. 108, pp. 17740-17747, 2004. [29] Pendry, J. B., and A. MacKinnon, Calculation of photon dispersion relations,' Phys. Rev. Lett., vol. 69, pp. 2772-2775, 1992. [30] Petrovykh, D. Y., F. J. Himpsel, and T. Jung, Width distribution of nanowires grown by step decoration,' Surf. Science, vol. 407, pp. 189-199, 1998. [31] Pokrovsky, A. L., and A. L. Efros, Electrodynamics of metallic photonic crystals and the problem of left-handed materials,' Phys. Rev. Lett., vol. 92, 059401, 2004. [32] Quinten, M., A. Leitner, J. R. Krenn, and F. R. Aussenegg, Electromagnetic energy transport via linear chains of silver nanoparticles,' Opt. Lett., vol. 23, pp. 1331-1333, 1998. [33] Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Berlin: Springer-verlag, 1988. [34] Rayleigh, L., The dispersal of light by a dielectric cylinder,' Philos. Mag., vol. 36, pp. 365-376, 1918. [35] Raki¶c, A. D., A. B. Djurisi¶c, J. M. Elazar, and M. L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices,' Appl. Opt., vol. 37, 5271, 1998. [36] Schonbrun, E., M. Tinker, W. Park, and J. B. Lee, Negative refraction in a Si-Polymer photonic crystal membrane,' IEEE Photonics Tech. Lett., vol. 17, pp. 1196-1198, 2005. [37] Schultz, D. A., Plasmon resonant particles for biological detection,' Curr. Opin. in Biotechnol., vol. 14, pp. 13-22, 2003. [38] Schroter, U., and A. Dereux, Surface plasmon polaritons on metal cylinders with dielectric core,' Phys. Rev. B, vol. 64, 125420, 2001. [39] Shao, D. B., and S. C. Chen, Numerical simulation of surface-plasmon-assisted nanolithography,' Opt. Express, vol. 13, pp. 6964-6973, 2005. [40] She, H. Y., L. W. Li, S. J. Chua, W. B. Ewe, O. J. F. Martin, and J. R. Mosig, Enhanced backscattering by multiple nanocylinders illuminated by TE plane wave,' J. Appl. Phys., vol. 104, 064310, 2008. [41] Silva, T. J., and S. Schultz, A scanning near-field optical microscope for the imaging of magnetic domains in re°ection,' Rev. Sci. Inst., vol. 67, pp. 715-725, 1996. [42] Tayeb, G., and D. Maystre, Rigorous theoretical study of finite-size two-dimeionsal photonic crystals doped by microcavities,' J. Opt. Soc. Am. A, vol. 14, pp.3323-3332, 1997. [43] Temelkuran, B., S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Wavelength-scalable hollow optical fibres with large photonic bandgaps,' Na- ture, vol. 420, pp. 650-653, 2002. [44] Twersky, V., Multiple scattering of radiation by an arbitrary configuration of parallel cylinders,' J. Acoust. Soc. Am., vol. 24, pp. 42-46, 1951. [45] Twersky, V., Multiple scattering of radiation by an arbitrary planar configuration of parallel cylinders and by two parallel cylinders,' J. Appl. Phys, vol. 23, pp.407-414, 1952. [46] Vaicikauskas, V., J. Bremer, O. Hunderi, R. Antanavicius, and R. Januskevicius, 'Optical constants of indium tin oxide films as determined by a surface plasmon phase method,' Thin Solid Films, vol. 411, pp. 262-267, 2002. [47] Hulst, H. C. van de, On the attenuation of plane waves by obstacles of arbitrary size and form,' Physica, vol. 15, pp. 740-746, 1949. [48] Vial, A., A.-S. Grimault, D. macias, D. Barchiesi, M.L. de la chapelle, Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,' Phys. Rev. B, vol. 71, 085416, 2005. [49] Vial, A., and T. Laroche, Comparision of gold and silver dispersion laws suitable for FDTD simulations,' Appl. Phys. B, vol. 93, pp. 139-143, 2008. [50] Wolf, E., and G. Greg, Determination of the scattering amplitude and of the extinction cross-section from measurements at arbitrary distances from the scatter,' Phys. Lett. B, vol. 302, pp. 228-228, 2002. [51] Yablonovitch, E., Inhibited spontaneous emission in solid-state physics and electronics,' Phys. Rev. Lett., vol. 58, pp. 2059-2062, 1987. [52] Yonekura, J., M. Ikeda, and T. Baba, Analysis of ‾nite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method,' J. Lightwave Technol., vol.17, pp.1500-1508, 1909. [53] Zhang, Z., and S. Satpathy Electromagnagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations,' Phys. Rev. Lett., vol. 65, pp. 2650-2653, 1990. [54] Zhang, Y., R. H. Terrill, and P. W. Bohn, Coupled second-harmonic generation, surface plasmon resonance and AC impedance studies of full and partial monolayers in (Au, Ag)-alkanethiolate electrolyte systems,' Thin Solid Films, vol. 335, pp. 178-185, 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43968 | - |
| dc.description.abstract | 表面電漿共振是發生在介質和金屬交界面的能量異常增強現象,在二維的問題中,只發生在磁場極化方向和入射方向垂直的平面波。本論文主要使用多重散射法模擬二維金屬奈米圓柱的散射現象。多重散射法是一種用來分析圓柱結構的解析法,可以提供快速以及準確的計算。本研究探討在三百至八百奈米波長範圍內,具真實金屬材料奈米圓柱的散射現象。對單根銀圓柱,本研究探討圓柱半徑對散射場強度、散射截面積的值、以及散射截面積峰值所在的波長的影響。針對兩根銀圓柱,則研究入射光的方向、兩根圓柱的間距以及圓柱半徑對散射的影響。對於在一排多根圓柱且入射波為垂直方向入射波的情況,若圓柱間距足夠大,則散射會趨向收斂特性。對於一排圓柱而入射波為平行方向入射情況,本研究特別關注其導波特性。在多排圓柱的情況,本研究特別探討行距與列距對於散射截面積的影響。
本研究亦探討了二維光子晶體的特性。首先使用平面波展開法求得三角晶格及四方晶格的能帶圖,接著使用了多重散射法加以計算有限大小光子晶體的光波穿透特性,並與能帶圖做比較,相關的光子晶體共振腔和直線型缺陷波導也加以討論。 | zh_TW |
| dc.description.abstract | Surface plasmon resonance is an extraordinary energy enhancement phenomenon which occurs on the interface between dielectric and metal. In the two-dimensional (2-D) case, such resonance is only excited by the transverse-magnetic (TM) polarized wave with which the magnetic field is perpendicular to the 2-D plane. This research mainly concerns the scattering phenomena of 2-D metallic nanocylinders simulated using the multiple scattering method. The multiple scattering method is an analytical solution method for analyzing scattering by cylinder structures, which can provide fast calculations and accurate results.
We investigate scattering by nano-cylinders with real metallic material in the wavelength regime of 300 nm-800 nm. For a single silver cylinder, the dependence on the cylinder radius of the intensity of the scattered field, the value of the scattering cross section (SCS), and the wavelength at which the maximum field value occurs is studied. For two silver cylinders, the scattering is seen to be affected by the direction of incident wave, the distance between the two cylinders, and the radius of cylinders. By increasing the number of cylinders in a single row at normal incidence, the scattering approaches a convergent behavior if the distance between adjacent cylinders is large enough. For waves incident parallelly onto a row of cylinders, the waveguiding behavior is particularly paid attention to. For multi-row structure, the effect on the SCS of the distance between cylinder rows and the gap size between columns is investigated in detail. We also investigated characteristics of 2-D photonic crystals (PCs) composed of circular cylinders. The plane-wave expansion (PWE) method is employed to obtain the photonic bandgaps (PBGs) for triangular lattice and square lattice. Then the multiple scattering method is used to obtain transmittance spectra for finite PCs for comparison with the PWE method calculated PBGs. Examples of PC cavity and line defect are also discussed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:34:32Z (GMT). No. of bitstreams: 1 ntu-98-R96941072-1.pdf: 4235921 bytes, checksum: ea55c5712adfb1502f71074f3eac4953 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Mathematical Formulation of the Multiple Scattering Method 5 2.1 The Multiple Scattering Method . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Scattering by a Single Cylinder . . . . . . . . . . . . . . . . . 5 2.1.2 Scattering by Multiple Cylinders . . . . . . . . . . . . . . . . 9 2.2 Near to Far Field Transformation . . . . . . . . . . . . . . . . . . . . 12 2.2.1 The Cross-Section Theorem . . . . . . . . . . . . . . . . . . . 12 2.2.2 Radar Cross Section . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 Scattering Cross Section . . . . . . . . . . . . . . . . . . . . . 16 3 Modeling of Metallic Cylinder Arrays 23 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Before Modeling: The Optical Properties . . . . . . . . . . . . . . . . 24 3.3 Modeling of Single Cylinders with Different Radii . . . . . . . . . . . 26 3.4 Modeling of Two Cylinders . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.1 Two Cylinders with Di®erent Gaps . . . . . . . . . . . . . . . 26 3.4.2 Two Cylinders with Varying Radii . . . . . . . . . . . . . . . 28 3.5 Modeling of Multiple Cylinders . . . . . . . . . . . . . . . . . . . . . 28 3.5.1 Multiple Cylinders in a Single Row . . . . . . . . . . . . . . . 28 3.5.2 Modeling of Multiple Cylinders in Two Rows . . . . . . . . . . 30 4 Modeling the Transmittance of 2D Photonic Crystals 72 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2 Modeling of Transmittance in Uniform Crystals . . . . . . . . . . . . 74 4.2.1 Uniform Crystals with Triangular Lattice . . . . . . . . . . . . 74 4.2.2 Uniform Crystals with Square Lattice . . . . . . . . . . . . . . 75 4.3 Modeling of Transmittance in Crystal with Defects . . . . . . . . . . 76 5 Conclusion 97 | |
| dc.language.iso | en | |
| dc.subject | 表面電漿共振 | zh_TW |
| dc.subject | 多重散射法 | zh_TW |
| dc.subject | 散射截面積 | zh_TW |
| dc.subject | 圓柱 | zh_TW |
| dc.subject | 二維光子晶體 | zh_TW |
| dc.subject | Surface plasmon resonance | en |
| dc.subject | 2-D photonic crystal | en |
| dc.subject | Cylinder | en |
| dc.subject | Scattering cross section | en |
| dc.subject | Multiple scattering method | en |
| dc.title | 圓柱體系統的多重散射分析 | zh_TW |
| dc.title | Multiple Scattering Analysis of Circular-Cylinder Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江衍偉(Yean-Woei Kiang),王俊凱(Juen-Kai Wang) | |
| dc.subject.keyword | 表面電漿共振,多重散射法,散射截面積,圓柱,二維光子晶體, | zh_TW |
| dc.subject.keyword | Surface plasmon resonance,Multiple scattering method,Scattering cross section,Cylinder,2-D photonic crystal, | en |
| dc.relation.page | 104 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 4.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
