請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43931完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林淑萍 | |
| dc.contributor.author | Liang Liu | en |
| dc.contributor.author | 劉亮 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:33:11Z | - |
| dc.date.available | 2016-10-07 | |
| dc.date.copyright | 2011-10-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-16 | |
| dc.identifier.citation | Baselga J, Rischin D, Ranson M, Calvert H, Raymond E, Kieback DG et al (2002). Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol 20: 4292-4302.
Birnbaum A, Ready N (2005). Gefitinib therapy for non-small cell lung cancer. Curr Treat Options Oncol 6: 75-81. Bivona TG, Hieronymus H, Parker J, Chang K, Taron M, Rosell R et al (2011). FAS and NF-kappaB signalling modulate dependence of lung cancers on mutant EGFR. Nature 471: 523-526. Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N et al (2005). Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25: 1025-1040. Bursch W, Ellinger A, Kienzl H, Torok L, Pandey S, Sikorska M et al (1996). Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17: 1595-1607. Choi YJ, Rho JK, Jeon BS, Choi SJ, Park SC, Lee SS et al (2010). Combined inhibition of IGFR enhances the effects of gefitinib in H1650: a lung cancer cell line with EGFR mutation and primary resistance to EGFR-TK inhibitors. Cancer Chemother Pharmacol 66: 381-388. Ciardiello F, Caputo R, Bianco R, Damiano V, Pomatico G, De Placido S et al (2000). Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res 6: 2053-2063. Ciardiello F, Caputo R, Bianco R, Damiano V, Fontanini G, Cuccato S et al (2001). Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res 7: 1459-1465. Codogno P, Meijer AJ (2005). Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12 Suppl 2: 1509-1518. Cory S, Adams JM (2002). The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2: 647-656. Dawson NA, Guo C, Zak R, Dorsey B, Smoot J, Wong J et al (2004). A phase II trial of gefitinib (Iressa, ZD1839) in stage IV and recurrent renal cell carcinoma. Clin Cancer Res 10: 7812-7819. Demarchi F, Bertoli C, Copetti T, Tanida I, Brancolini C, Eskelinen EL et al (2006). Calpain is required for macroautophagy in mammalian cells. J Cell Biol 175: 595-605. Dempke WC, Suto T, Reck M (2010). Targeted therapies for non-small cell lung cancer. Lung Cancer 67: 257-274. Deng X, Gao F, May WS, Jr. (2003). Bcl2 retards G1/S cell cycle transition by regulating intracellular ROS. Blood 102: 3179-3185. Drucker B, Bacik J, Ginsberg M, Marion S, Russo P, Mazumdar M et al (2003). Phase II trial of ZD1839 (IRESSA) in patients with advanced renal cell carcinoma. Invest New Drugs 21: 341-345. Du C, Fang M, Li Y, Li L, Wang X (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33-42. Einhorn LH (2008). First-line chemotherapy for non-small-cell lung cancer: is there a superior regimen based on histology? J Clin Oncol 26: 3485-3486. El Dine RS, El Halawany AM, Ma CM, Hattori M (2008). Anti-HIV-1 protease activity of lanostane triterpenes from the vietnamese mushroom Ganoderma colossum. J Nat Prod 71: 1022-1026. Elmore S (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol 35: 495-516. Frampton JE, Easthope SE (2005). Spotlight on gefitinib in non-small-cell lung cancer. Am J Pharmacogenomics 5: 133-136. Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY et al (2003). Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol 21: 2237-2246. Galonek HL, Hardwick JM (2006). Upgrading the BCL-2 network. Nat Cell Biol 8: 1317-1319. Han W, Pan H, Chen Y, Sun J, Wang Y, Li J et al (2011). EGFR Tyrosine Kinase Inhibitors Activate Autophagy as a Cytoprotective Response in Human Lung Cancer Cells. PLoS One 6: e18691. Huie CW, Di X (2004). Chromatographic and electrophoretic methods for Lingzhi pharmacologically active components. J Chromatogr B Analyt Technol Biomed Life Sci 812: 241-257. Igney FH, Krammer PH (2002). Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2: 277-288. Ito H, Daido S, Kanzawa T, Kondo S, Kondo Y (2005). Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol 26: 1401-1410. Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW (2003). Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 284: 31-53. Kang MR, Kim HM, Kang JS, Lee K, Lee SD, Hyun DH et al (2011). Lipid-Soluble Ginseng Extract Induces Apoptosis and G0/G1 Cell Cycle Arrest in NCI-H460 Human Lung Cancer Cells. Plant Foods Hum Nutr 66: 101-106. Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005). The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5: 726-734. Kris MG, Natale RB, Herbst RS, Lynch TJ, Jr., Prager D, Belani CP et al (2003). Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290: 2149-2158. Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P et al (2005). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 12 Suppl 2: 1463-1467. Li X, Fan Z (2010). The epidermal growth factor receptor antibody cetuximab induces autophagy in cancer cells by downregulating HIF-1alpha and Bcl-2 and activating the beclin 1/hVps34 complex. Cancer Res 70: 5942-5952. Lin ZB (2005). Cellular and molecular mechanisms of immuno-modulation by Ganoderma lucidum. J Pharmacol Sci 99: 144-153. Liu JS (1983). Schisanlactone A, a new type of triterpenoid from a schisandra sp. Tetrahedron Letters 24: 2351-2354. Ma J, Ye Q, Hua Y, Zhang D, Cooper R, Chang MN et al (2002). New lanostanoids from the mushroom Ganoderma lucidum. J Nat Prod 65: 72-75. Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P et al (2007a). Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26: 2527-2539. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007b). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8: 741-752. Mantena SK, Sharma SD, Katiyar SK (2006). Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP. Carcinogenesis 27: 2018-2027. Moasser MM, Basso A, Averbuch SD, Rosen N (2001). The tyrosine kinase inhibitor ZD1839 ('Iressa') inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells. Cancer Res 61: 7184-7188. Nicholson RI, Gee JM, Harper ME (2001). EGFR and cancer prognosis. Eur J Cancer 37 Suppl 4: S9-15. Ofodile LN, Uma NU, Kokubun T, Grayer RJ, Ogundipe OT, Simmonds MS (2005). Antimicrobial activity of some Ganoderma species from Nigeria. Phytother Res 19: 310-313. Ogier-Denis E, Codogno P (2003). Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta 1603: 113-128. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304: 1497-1500. Paterson RR (2006). Ganoderma - a therapeutic fungal biofactory. Phytochemistry 67: 1985-2001. Price N, Belani C (2005). Clinical development of gefitinib in non-small-cell lung cancer and the Iressa Survival Evaluation in Lung Cancer trial. Clin Lung Cancer 6: 214-216. Provencio M, Sanchez A, Garrido P, Valcarcel F (2010). New molecular targeted therapies integrated with radiation therapy in lung cancer. Clin Lung Cancer 11: 91-97. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A et al (2003). Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112: 1809-1820. Reck M, Gatzemeier U (2005). Gefitinib ('Iressa'): a new therapy for advanced non-small-cell lung cancer. Respir Med 99: 298-307. Rich JN, Reardon DA, Peery T, Dowell JM, Quinn JA, Penne KL et al (2004). Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 22: 133-142. Seglen PO, Gordon PB (1982). 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A 79: 1889-1892. Sharma SV, Bell DW, Settleman J, Haber DA (2007). Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7: 169-181. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB et al (2004). Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6: 1221-1228. Sos ML, Koker M, Weir BA, Heynck S, Rabinovsky R, Zander T et al (2009). PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res 69: 3256-3261. Velcheti V, Morgensztern D, Govindan R (2010). Management of patients with advanced non-small cell lung cancer: role of gefitinib. Biologics 4: 83-90. Wakeling AE, Guy SP, Woodburn JR, Ashton SE, Curry BJ, Barker AJ et al (2002). ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 62: 5749-5754. Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y (1998). Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 23: 33-42. Yarden Y, Schlessinger J (1987). Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation. Biochemistry 26: 1434-1442. Yim D, Singh RP, Agarwal C, Lee S, Chi H, Agarwal R (2005). A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells. Cancer Res 65: 1035-1044. Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003). Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100: 15077-15082. Zeng X, Yan T, Schupp JE, Seo Y, Kinsella TJ (2007). DNA mismatch repair initiates 6-thioguanine--induced autophagy through p53 activation in human tumor cells. Clin Cancer Res 13: 1315-1321. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43931 | - |
| dc.description.abstract | I.
艾瑞莎可以專一性抑制上皮生長因子受器的酪胺酸激酶活性,目前已在多國被核准用於治療非小細胞性肺癌。本研究探討艾瑞莎對肺癌細胞株H1650的影響,艾瑞莎可以有效抑制上皮生長因子的磷酸化,並抑制下游Akt分子的活化,但對ERK的磷酸化則沒有影響;艾瑞莎會抑制H1650細胞生長及造成G0/G1細胞週期停滯;艾瑞莎抑制Bcl-2蛋白質表現,提高Bax蛋白質和p53蛋白質表現,進而誘導H1650細胞進行細胞凋亡。研究發現,艾瑞莎會誘導H1650細胞出現細胞自噬現象,包含大量酸性囊胞的累積、LC3蛋白質的轉化以及細胞自噬溶體的形成;我們並進一步藉由3-methyladenine及Bafilomycin A1來抑制細胞自噬,發現會造成H1650細胞株更容易受到艾瑞莎誘導進行細胞凋亡,證實細胞自噬在這裡是扮演著保護癌細胞對抗艾瑞莎誘導細胞凋亡的功能。 II. 本篇研究從黃芝(Ganoderma colossum)中分離純化出一抗癌化合物,經構造鑑定發現是為五味子內酯A (Schisanlactone A)。五味子內酯A最早是在1983年從五味子中被分離純化出來,至今已超過20年,但生物活性方面的研究卻非常少,目前唯一有被報導的是抑制愛滋病病毒蛋白質酶活性。黃芝俗稱棺菇,因為不易取得所以相關研究十分稀少,過去研究曾從黃芝中純化得到20種天然物,五味子內酯A便是其中之一。;本篇研究從黃芝經由酒精萃取、乙酸乙酯層析、矽膠管柱層析以及高效能液相層析等方式分離純化得到五味子內酯A,並進一步探討其對癌細胞的影響;五味子內酯A會抑制肺癌細胞株A549的生長,並造成細胞死亡,其抑制50%細胞活性的藥物濃度為2.4 μM (72小時);探討其機轉發現五味子內酯A會造成A549細胞株出現細胞週期G0/G1階段停滯,並提高CDK2的表現,而Cyclin D1的表現則不受影響,五味子內酯A長時間處理也會誘導細胞死亡,進一步研究顯示,五味子內酯A會活化Caspase-3的活性,但是會刺激A549細胞株內Bcl-2蛋白質表現量上升以及p53蛋白質表現量下降。實際的死亡機制還需進一步探討。 | zh_TW |
| dc.description.abstract | I.
Gefitinib is a clinical use specific epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor for treatment of non-small cell lung cancer. In this study, mechanism of gefitinib-induced cell death in NSCLC H1650 cancer cell line was studied. When gefitinib was used to inhibit EGFR phosphorylation, partly diminished Akt activation and exerted no effect on ERK phosphorylation. The treatment was found to induces G0/G1 cell cycle arrest and reduce cell proliferation rate. Apoptotic cell death was triggered by decrease in the level of anti-apoptotic protein Bcl-2, increases the level of pro-apoptotic protein Bax and p53. On the other hand, gefitinib was found to induce minor autophagic response in H1650 cancer cells as shown by acidic vesicular organelles accumulation, protein LC3 conversion and autophagosome formation. Bafilomycin A1 or 3-methyladenine was used to inhibit the autophagy response induced by gefitinib. Both autophage inhibitors render H1650 cancer cell prone to gefitinib-induced apoptosis. The results indicate that autophagy plays a protective role in H1650 cells preventing apoptotic cell death induced by gefitinib. II. An anticancer compound was isolated from medicinal mushroom Ganoderma colossum (G. colossum). The chemical structure was identified and characterized to be Schisanlactone A which was first isolated from a Schisandra sp. in 1983. Anti-HIV protease activity of the compound is the only bioactivity had been reported so far. G. colossum is a rare species of Ganodermataceae family mushroom. The bioactivity of G. colossum and the bioactive compounds in G. colossum have rarely been reported. In this study, ethanol extraction, ethyl acetate partition, silica gel column chromatography and high performance liquid chromatography were used to isolate schisanlactone A from G. colossum. Schisanlactone A was found to inhibit growth and induce cell death in A549 lung cancer cells with IC50= 2.4 μM (72-h). In A549 cells, schisanlactone A induces G0/G1 cell cycle arrest, CDK2 was up-regulated and cyclin D1 remained unchanged. Schisanlactone A was found to activate caspase-3 to mediate cell death, but increases in Bcl-2, an antiapoptotic protein, and reduces in p53 protein, an proapoptotic protein were observed. The mechanism of cell death induced by schisanlactone A needs further study. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:33:11Z (GMT). No. of bitstreams: 1 ntu-100-R98424004-1.pdf: 2936122 bytes, checksum: 9311e016896264911894aeb45587e7ed (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Part I- Study on the Gefitinib-induced Apoptosis and Autophagy in H1650 Lung Cancer Cells
Abbreviation list VI Abstract-I in Chinese 1 Abstract-I in English 2 1. Introduction 3 1.1 Gefitinib (Iressa®) 3 1.2 Lung cancer 4 1.3 Programmed cell death 5 1.4 Autophagy and cancer 8 1.5 Research purpose 9 2. Materials and Methods 11 2.1 Materials 11 2.2 Cell culture 12 2.3 Cell activity assay 12 2.4 Trypan blue exclusion assay 13 2.5 Mitochondrial membrance potential (MMP) assay 13 2.6 Cell membrane integrity analysis 13 2.7 Capase-3 activity assay 14 2.8 Cell cycle and DNA content analysis 14 2.9 Cellular acidic vesicular organelles (AVOs) detection 15 2.10 Electron microscopy 15 2.11 Protein extract preparation and immunoblotting 16 2.12 Statistical analysis 16 3. Results 17 3.1 Gefitinib inhibits cancer cell growth by inducing G0/G1 cell cycle arrest and then apoptotic cell death. 17 3.2 Gefitinib induces autophagic response in H1650 lung cancer cells 18 3.3 Inhibition of autophagy facilitates gefitinib-induced apoptosis 19 4. Discussion 21 Part II- Schisanlactone A - Purification and Growth Inhibitory Effects on A549 Lung Cancer Cells Abstract-II in chinese 37 Abstract-II in English 38 5. Introduction 39 5.1 Schisanlactone A 39 5.2 Ganoderma Colossum 39 5.3 The principle for extraction and isolation of triterpenoids from Ganoderma 40 5.4 Research purpose 41 6. Materials and Methods 42 6.1 Materials 42 6.2 General experimental procedures 42 6.3 Preparation of Ganoderma colossum EA layer [AE] 43 6.4 Fractionation of Ganoderma colossum EA layer [AE] 43 6.5 Purification of schisanlactone A 44 6.6 Cell culture 44 6.7 Nuclear protein extraction 45 6.8 Statistical analysis 45 7. Results 46 7.1 Schisanlactone A is one of the bioactive compound of G. colossum. 46 7.2 Schisanlactone A inhibits cell growth and induces cell death in A549 lung cancer cells. 48 7.3 Schisanlactone A affects protein expression level in A549 cancer cells. 49 8. Discussion 50 9. Appendix - Compounds purified from Ganoderma colossum.a 71 10. Reference 73 | |
| dc.language.iso | en | |
| dc.subject | 肺癌 | zh_TW |
| dc.subject | 艾瑞莎 | zh_TW |
| dc.subject | 細胞自噬 | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | 五味子內酯A | zh_TW |
| dc.subject | 黃芝 | zh_TW |
| dc.subject | Gefitinib | en |
| dc.subject | Ganoderma Colossum | en |
| dc.subject | Schisanlactone A | en |
| dc.subject | Apoptosis | en |
| dc.subject | Autophagy | en |
| dc.subject | Lung cancer | en |
| dc.title | (I)艾瑞莎誘導H1650肺癌細胞株進行細胞凋亡及細胞自噬之研究
(II)五味子內酯A之純化及抑制A549肺癌細胞株生長之研究 | zh_TW |
| dc.title | (I)Study on the Gefitinib-induced Apoptosis and Autophagy in H1650 Lung Cancer Cells
(II) Schisanlactone A - Purification and Growth Inhibitory Effects on A549 Lung Cancer Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林亮音,楊雅倩,胡忠怡 | |
| dc.subject.keyword | 艾瑞莎,肺癌,細胞自噬,細胞凋亡,五味子內酯A,黃芝, | zh_TW |
| dc.subject.keyword | Gefitinib,Lung cancer,Autophagy,Apoptosis,Schisanlactone A,Ganoderma Colossum, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
