請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43926完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 彭隆瀚 | |
| dc.contributor.author | Hong-Wei Kuo | en |
| dc.contributor.author | 郭宏瑋 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:33:01Z | - |
| dc.date.available | 2014-08-20 | |
| dc.date.copyright | 2009-08-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-14 | |
| dc.identifier.citation | [1] Y. Kuo, 'Thin Film Transistors, Materials and Processes, Amorphous Silicon Thin Film Transistors,' Boston, MA: Kluwer Aca- demic, vol. 1, p. 6, 2004.
[2] T. Sameshima, 'Status of Si thin film transistors,' Journal of Non-Crystalline Solids, vol. 227, pp. 1196-1201, 1998. [3] Dhananjay, C. W. Chu, C. W. Ou, M. C. Wu, Z. Y. Ho, K. C. Ho, and S. W. Lee, 'Complementary inverter circuits based on p-SnO2 and n-In2O3 thin film transistors,' Applied Physics Letters, vol. 92, pp. 232103-1-3, Jun 9 2008. [4] L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, 'High-performance transparent inorganic-organic hybrid thin-film n-type transistors,' Nature Materials, vol. 5, pp. 893-900, Nov 2006. [5] G. Lavareda, C. N. de Carvalho, E. Fortunato, A. R. Ramos, E. Alves, O. Conde, and A. Amaral, 'Transparent thin film transistors based on indium oxide semiconductor,' Journal of Non-Crystalline Solids, vol. 352, pp. 2311-2314, Jul 15 2006. [6] E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Goncalves, A. J. S. Marques, L. M. N. Pereira, and R. F. P. Martins, 'Fully transparent ZnO thin-film transistor produced at room temperature,' Advanced Materials, vol. 17, pp. 590-594, Mar 8 2005. [7] E. Fortunato, A. Pimentel, L. Pereira, A. Goncalves, G. Lavareda, H. Aguas, I. Ferreira, C. N. Carvalho, and R. Martins, 'High field-effect mobility zinc oxide thin film transistors produced at room temperature,' Journal of Non-Crystalline Solids, vol. 338-40, pp. 806-809, Jun 15 2004. [8] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, 'Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,' Journal of Applied Physics, vol. 93, pp. 1624-1630, Feb 1 2003. [9] H. Q. Chiang, D. Hong, C. M. Hung, R. E. Presley, J. F. Wager, C. H. Park, D. A. Keszler, and G. S. Herman, 'Thin-film transistors with amorphous indium gallium oxide channel layers,' Journal of Vacuum Science & Technology B, vol. 24, pp. 2702-2705, Nov-Dec 2006. [10] R. E. Presley, D. Hong, H. Q. Chiang, C. M. Hung, R. L. Hoffman, and J. F. Wager, 'Transparent ring oscillator based on indium gallium oxide thin-film transistors,' Solid-State Electronics, vol. 50, pp. 500-503, Mar 2006. [11] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, 'Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,' Science, vol. 300, pp. 1269-1272, May 23 2003. [12] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, 'Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,' Nature, vol. 432, pp. 488-492, Nov 25 2004. [13] J. Park, S. Kim, C. Kim, S. Kim, I. Song, H. Yin, K. K. Kim, S. Lee, K. Hong, J. Lee, J. Jung, E. Lee, K. W. Kwon, and Y. Park, 'High-performance amorphous gallium indium zinc oxide thin-film transistors through N2O plasma passivation,' Applied Physics Letters, vol. 93, pp. 053505-1-3, Aug 4 2008. [14] S. S. Park, W. H. Choi, D. H. Nam, K. Chai, J. K. Jeong, H. D. Lee, and G. W. Lee, 'Performance and Stability Characterization of Bottom Gated Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Grown by RF and DC Sputtering,' Japanese Journal of Applied Physics, vol. 48, pp. 04C134-1-5, Apr 2009. [15] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, 'Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,' Nature, vol. 432, pp. 488-492, Nov 25 2004. [16] T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, 'Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: An application to amorphous oxide semiconductors in In-Ga-Zn-O system,' Applied Physics Letters, vol. 90, pp. 242114-1-3, Jun 11 2007. [17] H. Hartnagel, 'Semiconducting Transparent Thin Films,' Bristol [England]: Institute of Physics Pub., 1995. [18] D. C. Paine, T. Whitson, D. Janiac, R. Beresford, C. O. Yang, and B. Lewis, 'Study of low temperature crystallization of amorphous thin film indium-tin-oxide,' J. Appl. Phys., vol. 85, pp. 8445-8450, 1999. [19] T. Minami, T. Miyata, and T. Yamamoto, 'Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering,' Surface & Coatings Technology, vol. 109, pp. 583-587, Oct 10 1998. [20] S. M. Sze, ' Physics of Semiconductor Devices,' Third Edition, Wiley Interscience, 2007 [21] D. A. Neamen, 'Semiconductor Physics and Devicess', Third Edition, McGraw-Hill, University of New Mexico, 2005. [22] T. C. Shen, G. B. Gao, and H. Morkoc, 'Recent Developments in Ohmic Contacts to III-V Compound Semiconductors,' J. Vac. Sci. Tech., B10, pp.2113, 1992. [23] R. E. Williams, 'Galliun Arsenide processing Techniques,' chapter 11, pp.225-253. [24] D. K. Schroder, 'Semiconductor material and device characterization,' Wiley Interscience , New York, p.169-208, pp.133, 1998. [25] 李嗣涔, 管傑雄, 孫台平, '半導體元件物理,' 三民書局, 臺北市. pp.61, 1995 [26] 丁南宏, 方宏聲, 方振洲, '真空技術與應用,' 國家實驗研究院, 儀器科技研究中心出版, p369-387 [27] T. Mizutani, Y. Ohno, M. Akita, S. Kishimoto, and K. Maezawa, 'A study on current collapse in AlGaN/GaN HEMTs induced by bias stress,' IEEE Transactions on Electron Devices, vol. 50, pp. 2015-2020, Oct 2003. [28] 胡振國, '金氧半電容元件講義,' 國立台灣大學電機資訊學院 [29] E. H. Nicollian, 'Metal Oxide Semiconductor Physics and Technology,' Wiley Interscience , New York, 2003. [30] Y. Vygranenko, K. Wang, M. Vieira, and A. Nathan, 'Indium oxide thin-film transistor by reactive ion beam assisted deposition,' Physica Status Solidi a-Applications and Materials Science, vol. 205, pp. 1925-1928, Aug 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43926 | - |
| dc.description.abstract | 本論文研究以射頻濺鍍法於室溫環境下製作氧化銦/氧化鎵透明薄膜電晶體的方法。藉由調控氧化銦通道的成長條件,並以傳輸線模型量測其電阻率與金屬-半導體接觸特性,發現當氧化銦通道電阻率約介於4.4×10^4 Ω-cm至6.56×10^5 Ω-cm之電晶體的特性最為穩定。對於閘極絕緣層而言,吾人以電漿輔助化學氣相沉積法於低溫下成長氮化矽,考量到金屬與氧化銦功函數差距,我們使用鉬(Mo)做為電晶體的汲極、源極與閘極接觸電極,成功製作出特性穩定的空乏型氧化銦薄膜電晶體。其通道長/寬比為8 um/80 um,元件之臨界電壓約-2.2 V、開/關電流比1.6×10^6、元件之次臨界擺幅與場效載子遷移率分別為1.3 V/decade與1.98 cm^2V^-1s^-1。
接續前述之基礎研究,本論文於其後引入超晶格通道概念於薄膜電晶體製作中,以場通道結構設計來提升前述元件之操作特性。在室溫下,具此結構的氧化銦/氧化鎵薄膜電晶體具有相當理想之操作特性。其臨界電壓約4.5 V、電流開/關比從10^6提升至10^7、飽和電流30 uA (W/L=80 um/8 um)、元件之次臨界擺幅與場效載子遷移率分別為0.66 V/decade與0.3~1.02 cm^2V^-1s^-1。元件通道區穿透率於可見光波段 (350 nm-750 nm)間皆大於80 %。 此外,由C-V量測結果所示,本論文所探討的薄膜電晶體,其界面陷阱密度約10^12~10^13 cm^-2eV^-1,其移動缺陷相當密集約8.85×10^11 cm^-2。產生密集的介面陷阱密度與移動缺陷之原因可能是來自於低溫成長之氮化矽絕緣層,此為限制元件載子遷移率的原因之一。然而能在低溫下成長良好特性薄膜電晶體的特性,使本元件將可應用於軟性電子領域之各類光電電子元件的主動關關。 | zh_TW |
| dc.description.abstract | We report a fabrication method to realize transparent thin film transistors (TFTs) at room temperature using radio frequency (RF) sputtered In2O3/Ga2O3 materials. The transmission line method (TLM) was used to examine the relationship between the resistivity of oxide channels and the growth conditions. We note that the oxide TFTs with channel resistivity lying between 4.4×10^4 Ω-cm to 6.56×10^5 Ω-cm exhibit better transistor characteristics. The gate insulator was formed by a thin silicon nitride layer grown by plasma enhanced chemical vapor deposition (PECVD) at low temperature. Considering the work function difference between the metal and the indium oxide, We selected molybdenum (Mo) as the source, drain, and gate contact metals. For an In2O3 TFT with a channel length and channel width of 8 um and 80 um, the device is operated at a depletion mode with a threshold voltage of -2.2 V. The electrical characteristics also exhibit the following: an on-to-off current modulation ratio (Ion/Ioff) of ~1.6×10^6, a subthreshold swing (S) of 1.3 V/decade, and a field-effect mobility (uFE) of 1.98 cm^2V^-1s^-1.
We further proposed a new device design by including a supper-lattice channel structure to improve the transistor characteristics at room temperature. Using incorporating an In2O3/Ga2O3 super-lattice channel structure, the transistor is shown to operate in an enhancement mode with a threshold voltage of 4.5 V. The device exhibits improved characteristics: with the on-to-off current modulation ratio (Ion/Ioff) increased from ~10^6 to 10^7, and the saturation current 30 uA (W/L=80 um/8 um). The subthreshold swing (S) and field-effect mobility (uFE) are estimated as 0.66 V/decade and 0.3~1.02 cm^2V^-1s^-1, respectively. All The TFT channels are transparent in visible wavelength (350 nm~750 nm) with transmittance over 80%. We further provide CV analysis to show that the interface trap density is 10^12~10^13 cm^-2eV^-1 for our TFTs, and the mobile charge density is 8.85×1011 cm-2. The reasons can be ascribed to the low temperature grown of silicon nitride. The high level mobile charge may be one of the reasons to limit the mobility of our TFT devices. However, the super-lattice TFTs offer good transistor characteristics to serve as candidate for active switch for flexible electronic applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:33:01Z (GMT). No. of bitstreams: 1 ntu-98-R96941082-1.pdf: 2065258 bytes, checksum: 9862a18e8df483fa2d100abf97521a0c (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 第一章 導論 1
1.1 前言 1 1.2 薄膜電晶體研究概況 3 1.3 研究動機與論文概述 5 1.4 論文架構 7 第二章 基本理論 8 2.1 晶體結構及特性 8 2.1.1 氧化銦之晶體結構與特性 8 2.1.2 氧化鎵之晶體結構與特性 11 2.2 金屬-氧化物-半導體場效電晶體原理 12 2.2.1 金屬-氧化層-半導體場效電晶體的操作原理 13 2.2.2 氧化物薄膜電晶體工作原理 17 2.3 接觸原理 18 2.3.1 歐姆接觸原理 18 2.3.2 傳輸線模型原理 21 2.3.3 蕭特基接觸原理 23 2.4 濺鍍原理 26 2.4.1 直流濺鍍系統 29 2.4.2 射頻濺鍍系統 29 第三章 元件製程流程 31 3.1 通道沉積製程 31 3.2 元件製程流程 35 第四章 實驗結果與討論 43 4.1 傳輸線模型之量測與分析 43 4.2 氧化銦薄膜電晶體量測與討論 50 4.2.1 閘極絕緣層材料測試 50 4.2.2 濺鍍氣體調變之電晶體量測 55 4.3 氧化銦/氧化鎵薄膜電晶體量測與討論 63 4.3.1 氧化銦/氧化鎵薄膜電晶體量測 63 4.3.2 氧化鎵保護層之電晶體量測 66 4.3.3 氧電漿處理之電晶體量測 69 4.3.4 調變汲極與源極間距之電晶體量測 73 4.3.5 穿透率之光學量測 76 4.4 電容量測與分析 78 第五章 結論與未來展望 83 5.1 結論 83 5.2 未來展望 85 參考資料 86 | |
| dc.language.iso | zh-TW | |
| dc.subject | 超晶格 | zh_TW |
| dc.subject | 氧化銦 | zh_TW |
| dc.subject | 氧化鎵 | zh_TW |
| dc.subject | 薄膜電晶體 | zh_TW |
| dc.subject | thin film transistor | en |
| dc.subject | super-lattice | en |
| dc.subject | gallium oxide | en |
| dc.subject | indium oxide | en |
| dc.title | 具超晶格結構之高效能氧化銦/氧化鎵透明薄膜電晶體之特性研究 | zh_TW |
| dc.title | High Performance Transparent Thin Film Transistors Based on Indium Oxide/Gallium Oxide Super-Lattice Structure | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳秋麟,黃建璋,李文欽,賴志明 | |
| dc.subject.keyword | 氧化銦,氧化鎵,薄膜電晶體,超晶格, | zh_TW |
| dc.subject.keyword | indium oxide,gallium oxide,thin film transistor,super-lattice, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
