Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4391
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李君浩(Jiun-Haw Lee)
dc.contributor.authorChia-Hsun Chenen
dc.contributor.author陳佳勳zh_TW
dc.date.accessioned2021-05-14T17:42:01Z-
dc.date.available2020-08-21
dc.date.available2021-05-14T17:42:01Z-
dc.date.copyright2015-08-21
dc.date.issued2015
dc.date.submitted2015-08-20
dc.identifier.citation[1] Chapin, D. M, Fuller, C. S, Pearson, G. L.J. Appl. Phys.,1954 (25), 676-677..
[2] Aman, M. M, Solangi, K. H, Hossain, M. S, Kazi, S. N.Renew. Sust. Energ. Rev., 2015 (41), 1190-1204.
[3] Li, G, Zhu, R, Yang, Y. Nature Photon, 2012, 6(3), 153-161..
[4] Riede, M., Mueller,Tress, W, Schueppel, R., Leo, K. Nanotechnology, 2008, 19(42), 424001.
[5] Chapin, D. M, Fuller, C. S, Pearson, G. L. J. Appl. Phys,1954, (25), 676-677..
[6] The NationCenter for Photovoltaic, National Renewable Energy Laboratory (NREL), (http://www.nrel.gov/)
[7] Tang, C. W. Appl. Phys. Lett, 1986, 48(2), 183-185..
[8] Bonham, J. S, Jarvis, D. H. Aust. J. Chem, 1977, 30(4), 705-720.
[9] Park, C. D, Fleetham, T. A, Vogt, B. D. Org. Electron., 2011, 12(9), 1465-1470.
[10] Sariciftci, N. S, Smilowitz, L, Heeger, A. J, Wudl, F.Science, 1992, 258(5087), 1474-1476.
[11] Miller, B, et al. J. Am. Chem. Soc, 1991, 113(16), 6291-6293.
[12] Nojiri, T., Alam, M. M, Konami, H, Watanabe, A, Ito, O. J. Phys. Chem. A, 1997, 101(43), 7943-7947.
[13] Pandey, R, Holmes, R. J. Appl. Phys. Lett, 2012, 100(8), 083303.
[14] Heeger, A. J.Adv. Mater, 2014, 26(1), 10-28.
[15] Ting, H. C, Chen, Y. H, Lin, L. Y, Chou, S. H, Liu, Y. H, Lin, H. W, Wong, K. T. ChemSusChem, 2014, 7(2), 457-465.
[16] Peumans, P, Uchida, S, Forrest, S. R. Nature, 2003, 425(6954), 158-162.
[17] Hiramoto, M, Fujiwara, H, Yokoyama, M. J. Appl. Phys, 1992, 72(8), 3781-3787.
[18] Tsuzuki, T, Shirota, Y, Rostalski, J, Meissner, D. Sol. Energ. Mat. Sol, 2000, 61(1), 1-8.
[19] Gebeyehu, D, Maennig, B, Drechsel, J, Leo, K, Pfeiffer, M. Sol. Energ. Mat. Sol, 2003, 79(1), 81-92.
[20] Uchida, S, Xue, J, Rand, B. P, Forrest, S. R. Appl. Phys. Lett, 2004, 84(21), 4218-4220.
[21] Zou, Y, Holst, J, Zhang, Y, Holmes, R. J. J. Phys. Chem. A, 2014, 2(31), 12397-12402.
[22] Kageyama, H, Ohishi, H, Tanaka, M, Ohmori, Y, Shirota, Y.Adv. Funct. Mater, 2009, 19(24), 3948-3955.
[23] Kim, B. G, Chung, K, Kim, J. Chem. Eur. J, 2013, 19(17), 5220-5230.
[24] Wu, Y, Zhu, W. Chem. Soc. Rev, 2013, 42(5), 2039-2058.
[25] Lin, L. Y, Chen, Y. H, Huang, Z. Y, Lin, H. W, Chou, Wong, K. T. J. Am. Chem. Soc, 2011, 33(40), 15822-15825.
[26] Chen, Y. H, Lin, L. Y, Lu, C. W, Lin, F, Huang, Z. Y, Lin, H. W, Darling, S. B. J. Am. Chem. Soc, 2012, 134(33), 13616-13623.
[27] Chiu, S. W, Lin, L. Y, Lin, H. W, Chen, Y. H, Huang, Z. Y, Wong, K. T. Chem. Commun, 2012, 48(13), 1857-1859.
[28] Ting, H. C, Chen, Y. H, Lin, L. Y., Chou, S. H, Liu, Y. H, Lin, H. W, Wong, K. T. ChemSusChem,2014, 7(2), 457-465.
[29] Koster, L. J. A, Mihailetchi, V. D, Ramaker, R, Blom, P. W. Appl. Phys. Lett, 2005, 86(12), 123509-123509.
[30] Kyaw, A. K. K, Wang, D. H, Gupta, V, Leong, W. L, Ke, L, Bazan, G. C, Heeger, A. ACS nano, 2013, 7(5), 4569-4577.
[31] Cowan, S. R, Street, R. A, Cho, S, Heeger, A. J. Phys. Rev B, 2011, 83(3), 035205.
[32] Clarke, T. M, Peet, J, Nattestad, A, Drolet, N, Dennler, G, Lungenschmied, Mozer, A. J. Org. Electron., 2012, 13(11), 2639-2646.
[33] Liu, L, Li, G. Sol. Energ. Mat. Sol, 2011, 95(9), 2557-2563.
[34] Servaites, J. D, Ratner, M. A, Marks, T. J. Energy Environ. Sci., 2011, 4(11), 4410-4422.
[35] Park, S. H, Roy, A, Beaupre, S, Cho, S, Coates, N, Heeger, A. J. Nature Photon, 2009, 3(5), 297-302.
[36] Ohkita, H, Cook, S, Astuti, Y, Duffy, W, Tierney, S, Zhang, W, Durrant, J. R. J. Am. Chem. Soc, 2008, 130(10), 3030-3042.
[37] Shoaee, S, Clarke, T. M, Huang, C, Barlow, S, Marder, S. R, Durrant, J. R. J. Am. Chem. Soc,2010, 132(37), 12919-12926.
[38] Shockley, W, Queisser, H. J. J. Appl. Phys, 1961, 32(3), 510-519.
[39] Nozik, A. J. Chem. Phys. Lett, 2008, 457(1), 3-11.
[40] Gabor, N. M, Zhong, Z, Bosnick, K, Park, J, McEuen, P. L. Science, 2009, 325(5946), 1367-1371.
[41] Beard, M. C, Knutsen, K. P, Yu, P, Luther, J. M, Song, Q, Nozik, A. J. Nano Lett, 2007, 7(8), 2506-2512.
[42] Tauc, J. J. Phys. Chem. Solids, 1959, 8, 219-223.
[43] Greyson, E. C, Stepp, B. R, Chen, X, Schwerin, A. F, Paci, I, Smith, Ratner, M. A. J. Phys. Chem. B, 2009, 114(45), 14223-14232.
[44] Austin, R. H, Baker, G. L, Etemad, S, Thompson, R. J. Chem. Phys,1989, 90(11), 6642-6646.
[45] Lee, J, Jadhav, P, Reusswig, P. D, Yost, S. R, Thompson, N. J, Baldo, M. A. Acc. Chem. Res, 2013 , 46(6), 1300-1311.
[46] Jadhav, P. J, Brown, P. R, Thompson, N, Wunsch, B, Mohanty, A, Baldo, M. A. Adv. Mater, 2012, 24(46), 6169-6174.
[47] Jadhav, P. J, Mohanty, A, Sussman, J, Baldo, M. A. Nano Lett, 2011, 11(4), 1495-1498.
[48] Congreve, D. N, Lee, J, Thompson, N. J, Hontz, E, Yost, S. R., Baldo, M. A. Science, 2013, 340(6130), 334-337.
[49] Reusswig, P. D, Congreve, D. N, Thompson, N. J, Baldo, M. A. Appl. Phys. Lett, 2012, 101(11), 113304.
[50] Singh, S, Jones, W. J, Siebrand, W, Stoicheff, B. P, Schneider, W. G. J. Chem. Phys, 1965, 42(1), 330-342.
[51] Swenberg, C. E, Stacy, W. T. Chem. Phys. Lett, 1968, 2(5), 327-328.
[52] Geacintov, N, Pope, M, Vogel, F. Phys. Rev. Lett, 1969, 22(12), 593.
[53] Groff, R. P, Avakian, P, Merrifield, R. E. Phys. Rev B, 1970, 1(2), 815.
[54] Arnold, S, Whitten, W. B. J. Chem. Phys, 1981, 75(3), 1166-1169.
[55] Fleming, G. R, Millar, D. P, Morris, G. C, Morris, J. M, Robinson, G. W. Aust. J. Chem, 1977, 30(11), 2353-2359.
[56] Jundt, C, Klein, G, Sipp, B, Le Moigne, J, Joucla, M, Villaeys, A. A. Chem. Phys. Lett, 1995, 241(1), 84-88.
[57] Lee, J, Bruzek, M. J, Thompson, N. J, Sfeir, M. Y, Anthony, J. E, Baldo, M. A. Adv. Mater, 2013, 25(10), 1445-1448.
[58] Müller, A. M, Avlasevich, Y. S, Schoeller, W. W, Müllen, K, & Bardeen, C. J. J. Am. Chem. Soc, 2007, 129(46), 14240-14250.
[59] Wilson, M. W, Rao, A, Clark, J, Kumar, R. S. S, Brida, D, Cerullo, G, Friend, R. H. J. Am. Chem. Soc, 2011, 133(31), 11830-11833.
[60] Burdett, J. J, Gosztola, D, Bardeen, C. J.J. Chem. Phys, 2011, 135(21), 214508.
[61] Jankus, V, Snedden, E. W, Bright, D. W, Arac, E, Monkman, A. P. Phys. Rev B, 2011, 87(22), 224202.
[62] Casanova, D. J. Chem. Theory Comput, 2013, 10(1), 324-334.
[63] Müller, H, Bässler, H, Vaubel, G. Chem. Phys. Lett, 1974, 29(1), 102-105.
[64] Piland, G. B, Burdett, J. J, Kurunthu, D, Bardeen, C. J. J. Phys. Chem. C, 2013, 117(3), 1224-1236.
[65] Herkstroeter, W. G, Merkel, P. B. J. Photochem. Photobiol, 1981, 16(4), 331-341.
[66] Chen, Y., Lee, B, Fu, D, &Podzorov, V. Adv. Mater, 2011, 23(45), 5370-5375.
[67] Burgdorff, C, Kircher, T, Löhmannsröben, H. G. Spectrochim. Acta Mol. Biomol. Spectrosc, 1988, 44(11), 1137-1141.
[68] Merrifield, R. E. Pure Appl. Chem, 1971, 27(3), 481-498.
[69] Lee, J., Jadhav, P., Baldo, M. A. Appl. Phys. Lett., 2009, 95(3), 033301.
[70] Ma, L, Zhang, K, Kloc, C, Sun, H, Michel-Beyerle, M. E, Gurzadyan, G. G. Phys. Chem. Chem. Phys, 2012, 14(23), 8307-8312.
[71] Ryasnyanskiy, A, Biaggio, I. Phys. Rev B, 2011, 84(19), 193203.
[72] Wen, X, Yu, P, Yuan, C. T, Ma, X, Tang, J. J. Phys. Chem. C, 2013, 117(34), 17741-17747.
[73] Rabinowitch, E. Trans. Faraday Soc, 1937, 33, 1225-1233.
[74] Chuang, T. J, Hoffman, G. W, &Eisenthal, K. B. Chem. Phys. Lett, 1974, 25(2), 201-205.
[75] Rabinowitch, E, & Wood, W. C. Faraday Soc, 1936, 32, 1381-1387.
[76] Laidler, K. J. IUPAC, 1996, 68(1), 149-192.
[77] Weeks, E. R, &Weitz, D. A. Chem. Phys, 2002, 284(1), 361-367.
[78] Braden, D. A, Parrack, E. E, Tyler, D. R. Coord. Chem. Rev., 2011211(1), 279-294.
[79] Jack, R. L, Garrahan, J. P. J. Chem. Phys, 2005, 123(16), 164508.
[80] Donkó, Z, Kalman, G. J, Golden, K. I. Phys. Rev. Lett, 2002, 88(22), 225001.
[81] Hofberger, W. Phys. Status Solidi, e
[82]Arnold, S, Alfano, R. R, Pope, M, Yu, W, Ho, P, Selsby, R, Swenberg, C. E. J. Chem. Phys, 1976, 64(12), 5104-5114.
[83] Arnold, S, Swenberg, C. E, & Pope, M. J. Chem. Phys, 1976, 64(12), 5115-5120.
[84] Hochstrasser, R. M, Whiteman, J. D. J. Chem. Phys, 1972, 56(12), 5945-5958.
[85] 楊雅婷,“小分子有機太陽能電池及非平面液晶元件結構之研究 ”台大光電所碩士論文(2013)
[86] 丁浩淳,“應用於有機太陽能電池之小分子材料的設計、合成與鑑定”台大化學所碩士論文 (2014).
[87] 陳柏勳,“藍色磷光有機發光二極體暫態機制與有機薄膜製作於矽基板之研究”台大光電所碩士論文 (2014).
[88] Piland, G. B, Burdett, J. J, Kurunthu, D, Bardeen, C. J. J. Phys. Chem. C, 2013, 117(3), 1224-1236.
[89] Herkstroeter, W. G., Merkel, P. B., J. Photochem., 1981, 16(4), 331-341.
[90] Tao, S., Matsuzaki, H., Uemura, H., Yada, H., Uemura, T., Takeya, Okamoto, H., 2011, Phys. Rev. B, 83(7), 075204.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4391-
dc.description.abstract本論文旨有其二,第一部分將介紹藉由合成四個新的施體材料運用於有機太陽能電池元件,其結構施體-施體-受體型小分子。7-(5-(di-p-tolylamino)thiophen-2-yl)benzo[c][1,2,5]thiadiazole-4-carbonitrile (DTCTB), 7-(4-(di-p-tolylamino)phenyl)benzo[c][1,2,5]thiadiazole-4-carbonitrile (DTCPB), 7-(5-(di-p-tolylamino)thiophen-2-yl)benzo[c][1,2,5]oxadiazole-4-carbonitrile (DTCTBO), 及7-(4-(di-p-tolylamino)phenyl)benzo[c][1,2,5]oxadiazole-4-carbonitrile (DTCPBO).,在一系列由混和濃度及膜厚變化之塊材異質混和界面架構下,利用與受體材料碳70混合,我們可得以四個小分子DTCPB, DTCTB, DTCPBO 及 DTCTBO所製成太陽能電池之最佳化功率轉換效率分別為6.55%, 4.40%, 5.98% 及4.65%。
二者, 我們使用暫態螢光之量測,來瞭解5,6,11,12-tetraphenylnaphthacene (rubrene)之單重態分裂(singlet fission)與三重態激子融合(triplet fusion)動態特性。在不同溫度及單重態-單重態滅絕可忽略之前提下,單重態分裂之活化動能可被決定。再者在膜厚較薄之薄膜中,由於空間局限之故,其會表現出較高機率之三重態激子融合速率。
zh_TW
dc.description.abstractThere are two parts in this dissertation. In the first part, we employed four donor-donor-acceptor (D-A-A) configurations molecules, 7-(5-(di-p-tolylamino)thiophen-2-yl)benzo[c][1,2,5]thiadiazole-4-carbonitrile (DTCTB), 7-(4-(di-p-tolylamino)phenyl)benzo[c][1,2,5]thiadiazole-4-carbonitrile (DTCPB), 7-(5-(di-p-tolylamino)thiophen-2-yl)benzo[c][1,2,5]oxadiazole-4-carbonitrile (DTCTBO), and 7-(4-(di-p-tolylamino)phenyl)benzo[c][1,2,5]oxadiazole-4-carbonitrile (DTCPBO) as electron donor materials for organic solar cell applications. By a series of methodical optimization, the highest power conversion efficiencies are 6.55%, 4.40%, 5.98%, 4.65% for DTCPB, DTCTB, DTCPBO and DTCTBO respectively with bulk heterojunction configuration.
In the second part of this dissertation, the exciton dynamic of 5,6,11,12-tetraphenylnaphthacene (rubrene) was investigated by transient photoluminescence (TrPL) measurements. With low excitation energy (to avoid singlet-singlet annihilation) at different temperatures, the activation energy of singlet fission (SF) in rubrene thin film can be obtained. We also found that the thinner rubrene exhibited higher fusion rate, which may result from higher probability for non-germinate recombination.
en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:42:01Z (GMT). No. of bitstreams: 1
ntu-104-R02941007-1.pdf: 4228074 bytes, checksum: f97fce808ca51eec1d6f897431196308 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 ii
摘要 iv
Abstract v
Content vi
1 Chapter 1 Introduction 1
1.1 Overview 1
1.2 Small molecule organic solar cells 2
1.2.1 Introduction of OSC 2
1.2.2 Bulk heterojunction configuration 4
1.2.3 D-A-A system organic materials 5
1.2.4 Recombination mechanisms of OSC 7
1.3 Singlet fission 9
1.3.1 Introduction 9
1.3.2 Exciton dynamics of aromatic based materials 11
1.3.3 Caging effect 14
1.4 Motivation 15
2 Chapter 2 Experiments 17
2.1 Introduction 17
2.2 Device fabrication and measurement systems for OSC 17
2.2.1 Substrate patterning 17
2.2.2 Device fabrication 18
2.2.3 Device performances measurement 19
2.2.4 Measurement of external quantum efficiency (EQE) 20
2.2.5 Absorption spectrum measurement 21
2.2.6 Measurement of optical constants 21
2.2.7 Sun variation system 22
2.3 Sample fabrication and measurement systems for exciton dynamics 23
2.3.1 Samples fabricated for exciton dynamic investigation 23
2.3 2 Steady state and time-resolve photoluminence (TrPL) at different temperatures 24
3 Chapter 3 Optimization of bulk heterojunction OSC for D-A-A configuration molecule with single cyano group as the electron donor material 27
3.1 Introduction 27
3.2 Photophysical properties of the four single cyano group electron donor materials 27
3.3 OSC optimization of four electron donor materials with single cyano substituent molecules 31
3.3.1 Comparison between PMHJ and BHJ of DTCTB devices 32
3.3.1.1 C60 based OSC 32
3.3.1.2 C70 based OSC 34
3.3.2 Optimization of different mixing ratio and thickness of active layer for DTCTB 36
3.3.2.1 C60 based OSC 37
3.3.2.2 C70 based OSC 39
3.3.2.3 Replacement of different blocking layer for DTCTB: C60 based OSC 42
3.3.3 Comparison between PMHJ and BHJ of DTCPB: C60 based OSC 46
3.3.4 Optimization of mixing ratio and thickness of active layer for DTCPB 48
3.3.4.1 C60 based OSC 48
3.3.4.2 C70 based OSC 52
3.3.4.3 Insertion of blocking layer for DTCPB: C60 based OSC 55
3.3.7 Optimization of mixing ratio and thickness of active layer for DTCTBO 65
3.3.7.1 C60 based OSC 65
3.4 Comparison of optimized device structures among four single cyano groups electron donor materials 70
3.5 Sun intensity variation measurements of OSCs with four single cyano groups electron donor materials 73
4 Chapter 4 Exciton dynamics in rubrene thin films 74
4.1 Introduction 74
4.2 Basic characteristics of amorphous rubrene thin films 75
4.3 TrPL of rubrene in toluene 76
4.4 TrPL of 100-nm rubrene thin film at 78 K with different excitation energy 78
4.5 TrPL of 100-nm rubrene thin film at room temperature with different excitation energy 79
4.6 TrPL of 100-nm rubrene thin film at different temperatures with ultra-low excitation energy 80
4.7 TrPL of rubrene thin film with different thickness and different excitation energy at room temperature 84
5 Chapter 5 Conclusion 89
5.1 Summary 89
5.2 Future work 89
Appendix 91
Appendix. I Morphology for four single cyano groups electron donor materials 91
Appendix. II Anisotropic characteristics of four single cyano groups electron donor materials 93
References 95
dc.language.isozh-TW
dc.subject三重態融合zh_TW
dc.subject有機太陽能電池zh_TW
dc.subject塊材異質接面zh_TW
dc.subject激發光光譜量測系統zh_TW
dc.subject單重態分裂zh_TW
dc.subjectsinglet fissionen
dc.subjecttriplet fusionen
dc.subjectorganic solar cellsen
dc.subjectbulk heterojunctionen
dc.subjecttransient photoluminescenceen
dc.title具腈基小分子有機太陽能電池之優化與紅螢烯薄膜激子動態特性之研究zh_TW
dc.titleDevice optimization for small molecular organic solar cell with cyano groups and exciton dynamics of rubrene thin filmen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱天隆(Tian-Lung Chiu),陳錦地(Chin-Ti Chen),王俊凱(Juen-Kai Wang),汪根欉(Ken-Tsung Wong)
dc.subject.keyword有機太陽能電池,塊材異質接面,激發光光譜量測系統,單重態分裂,三重態融合,zh_TW
dc.subject.keywordorganic solar cells,bulk heterojunction,transient photoluminescence,singlet fission,triplet fusion,en
dc.relation.page99
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf4.13 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved