請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43911
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 朱時宜(Shih-I Chu) | |
dc.contributor.author | Shein-Lun Liao | en |
dc.contributor.author | 廖聖侖 | zh_TW |
dc.date.accessioned | 2021-06-15T02:32:30Z | - |
dc.date.available | 2009-12-31 | |
dc.date.copyright | 2009-08-20 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-14 | |
dc.identifier.citation | Bibliography
[1] T. Koch, T. Lahaye, J. Metz, B. Frohlich, A. Griesmaier, and T. Pfau. Stabilization of a purely dipolar quantum gas against collapse. Nat Phys, 4(3):218–222, March 2008. [2] Eric Cornell. Very cold indeed: The nanokelvin physics of bose-einstein condensation. J. Res. Natl. Inst. Stand. Technol., 101:419, 1996. [3] S. Yi and L. You. Probing dipolar effects with condensate shape oscillation. Phys. Rev. A, 66(1):013607, Jul 2002. [4] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Observation of bose-einstein condensation in a dilute atomic vapor. Science, 269(5221):198–201, 1995. [5] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle. Bose-einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75(22):3969–3973, Nov 1995. 43 [6] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet. Evidence of boseeinstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett., 75(9):1687–1690, Aug 1995. [7] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm. Bose-Einstein Condensation of Molecules. Science, 302(5653):2101–2103, 2003. [8] Markus Greiner, Cindy A. Regal, and Deborah S. Jin. Emergence of a molecular bose-einstein condensate from a fermi gas. Nature, 426(6966):537–540, December 2003. [9] Markus Greiner, Olaf Mandel, Tilman Esslinger, TheodorW. Hansch, and Immanuel Bloch. Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature, 415(6867):39–44, January 2002. [10] T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. J. J. M. F. Kokkelmans, and C. Salomon. Experimental study of the bec-bcs crossover region in lithium 6. Phys. Rev. Lett., 93(5):050401, Jul 2004. [11] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman, and W. Ketterle. Condensation of pairs of fermionic atoms near a feshbach resonance. Phys. Rev. Lett., 92(12):120403, Mar 2004. 44 [12] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. Hecker Denschlag, and R. Grimm. Crossover from a molecular bose-einstein condensate to a degenerate fermi gas. Phys. Rev. Lett., 92(12):120401, Mar 2004. [13] J. Kinast, S. L. Hemmer, M. E. Gehm, A. Turlapov, and J. E. Thomas. Evidence for superfluidity in a resonantly interacting fermi gas. Phys. Rev. Lett., 92(15):150402, Apr 2004. [14] T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H.-C. Ngerl, and R. Grimm. Evidence for efimov quantum states in an ultracold gas of caesium atoms. Nature, 440(7082):315–318, March 2006. [15] Axel Griesmaier, J¨orgWerner, Sven Hensler, J¨urgen Stuhler, and Tilman Pfau. Boseeinstein condensation of chromium. Phys. Rev. Lett., 94(16):160401, Apr 2005. [16] J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, T. Pfau, S. Giovanazzi, P. Pedri, and L. Santos. Observation of dipole-dipole interaction in a degenerate quantum gas. Phys. Rev. Lett., 95(15):150406, Oct 2005. [17] S. Giovanazzi, D. O’Dell, and G. Kurizki. Density modulations of bose-einstein condensates via laser-induced interactions. Phys. Rev. Lett., 88(13):130402, Mar 2002. 45 [18] K. G´oral, L. Santos, and M. Lewenstein. Quantum phases of dipolar bosons in optical lattices. Phys. Rev. Lett., 88(17):170406, Apr 2002. [19] L. Santos, G. V. Shlyapnikov, and M. Lewenstein. Roton-maxon spectrum and stability of trapped dipolar bose-einstein condensates. Phys. Rev. Lett., 90(25):250403, Jun 2003. [20] M. A. Baranov, Klaus Osterloh, and M. Lewenstein. Fractional quantum hall states in ultracold rapidly rotating dipolar fermi gases. Phys. Rev. Lett., 94(7):070404, Feb 2005. [21] D. DeMille. Quantum computation with trapped polar molecules. Phys. Rev. Lett., 88(6):067901, Jan 2002. [22] E. Bodo, F. A. Gianturco, and A. Dalgarno. F + d[sub 2] reaction at ultracold temperatures. The Journal of Chemical Physics, 116(21):9222–9227, 2002. [23] L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein. Bose-einstein condensation in trapped dipolar gases. Phys. Rev. Lett., 85(9):1791–1794, Aug 2000. [24] S. Giovanazzi, P. Pedri, L. Santos, A. Griesmaier, M. Fattori, T. Koch, J. Stuhler, and T. Pfau. Expansion dynamics of a dipolar bose-einstein condensate. Physical Review A (Atomic, Molecular, and Optical Physics), 74(1):013621, 2006. 46 [25] Duncan H. J. O’Dell, Stefano Giovanazzi, and Claudia Eberlein. Exact hydrodynamics of a trapped dipolar bose-einstein condensate. Phys. Rev. Lett., 92(25):250401, Jun 2004. [26] E.P. Gross. Structure of a quantized vortex in boson systems. Nuovo Cimento, 20:454, 1961. [27] L.P. Pitaevskii. Vortex lines in an imperfect bose gas. Sov. Phys. JETP, 13:451, 1961. [28] J. Werner, A. Griesmaier, S. Hensler, J. Stuhler, T. Pfau, A. Simoni, and E. Tiesinga. Observation of feshbach resonances in an ultracold gas of cr52. Phys. Rev. Lett., 94(18):183201, May 2005. [29] Thierry Lahaye, Tobias Koch, Bernd Frohlich, Marco Fattori, Jonas Metz, Axel Griesmaier, Stefano Giovanazzi, and Tilman Pfau. Strong dipolar effects in a quantum ferrofluid. Nature, 448(7154):672–675, August 2007. [30] Franco Dalfovo, Stefano Giorgini, Lev P. Pitaevskii, and Sandro Stringari. Theory of bose-einstein condensation in trapped gases. Rev. Mod. Phys., 71(3):463–512, Apr 1999. [31] R. J. Dodd, Mark Edwards, C. J. Williams, C. W. Clark, M. J. Holland, P. A. Ruprecht, and K. Burnett. Role of attractive interactions on bose-einstein condensation. Phys. Rev. A, 54(1):661–664, Jul 1996. 47 [32] X. M. Tong and S. I. Chu. Theoretical study of multiple high-order harmonic generation by intense ultrashort pulsed laser fields: A new generalized pseudospectral time-dependent method. Chem. Phys., 217(2-3):119–130, 1997. [33] A. R. Edmonds. Angular momentum in quantum mechanics. Princeton, N.J. : Princeton University Press,, 1957. [34] Paulsamy Muruganandam and Sadhan K Adhikari. Boseeinstein condensation dynamics in three dimensions by the pseudospectral and finite-difference methods. Journal of Physics B: Atomic, Molecular and Optical Physics, page 2501, 2003. [35] B. I. Schneider and D. L. Feder. Numerical approach to the ground and excited states of a bose-einstein condensed gas confined in a completely anisotropic trap. Phys. Rev. A, 59(3):2232–2242, Mar 1999. [36] T. Lahaye, J. Metz, B. Fr¨ohlich, T. Koch, M. Meister, A. Griesmaier, T. Pfau, H. Saito, Y. Kawaguchi, and M. Ueda. d-wave collapse and explosion of a dipolar bose-einstein condensate. Physical Review Letters, 101(8):080401, 2008. [37] Maciej Lewenstein. Dancing the bose-nova with a twirl. Physics, 1:13, Aug 2008. [38] X. M. Tong and S. I. Chu. Density-functional theory with optimized effective potential and self-interaction correction for ground states and autoionizing resonances. Phys. Rev. A, 55(5):3406–3416, 1997. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43911 | - |
dc.description.abstract | We present an ab initio numerical method to study the properties of Bose-Einstein condensates (BECs) which include both interactions via contact and magnetic dipole-dipole forces. We efficiently solve the nonlocal and anisotropic interaction potential between dipoles which are represented in a differential form. The BEC Hamiltonian is discretized and solved accurately through the generalized pseudospectral method (GPS method). Using the iteration minimization technique, we obtain the solutions of the non-linear Gross-Pitaevskii equation with non-local dipolar interaction. We find that the density profiles strongly depend upon the geometry of trapping potentials. We determine that the maximum density is not always located at the center of a trap due to the interaction between dipoles. Experiments have shown that the stability of dipolar BECs strongly depends on the geometry of trapping potentials and the scattering length. As the scattering length decreases under certain critical values acrit , BECs are no longer stable. Using the GPS method, the critical scattering length corresponding to different trap geometries is accurately determined with a minimum number of grid points. In addition, we show that the
Thomas-Fermi approximation is not good enough to describe condensates before BECs collapse, and the double-peaks feature of density profiles is an important characteristic in such condition. In the near future, the dynamics of dipolar BECs will be studied employing the GPS method. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:32:30Z (GMT). No. of bitstreams: 1 ntu-98-R95222044-1.pdf: 3831326 bytes, checksum: 1c1455079541f97fc8f3f87281d876f7 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | Contents
Acknowledgement i Abstract (Chinese) ii Abstract iii 1 Introduction 1 1.1 Bose-Einstein condensation . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Dipolar BEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Theory of Bose-Einstein condensate and dipole gas 6 2.1 Effective interactions and the scattering length . . . . . . . . . . . . . . . 6 2.2 Feshbach resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Gross-Pitaevskii equation . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Stability and collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 Dipolar interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 iv 3 Numerical methods 15 3.1 Challenge of dipole interaction . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Generalized pseudospectral method . . . . . . . . . . . . . . . . . . . . 16 3.3 BEC in an anisotropic trap . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 Dipole-dipole interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5 Ground state and energy minimization by iterative method . . . . . . . . 24 4 Results and discussions 28 4.1 Pure contact interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2 Pure dipole interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 Scattering length and stability . . . . . . . . . . . . . . . . . . . . . . . 37 5 Conclusions and Perspectives 41 Bibliography 43 | |
dc.language.iso | en | |
dc.title | 以第一原理研究非等向性阱中玻色-愛因斯坦凝結在接觸與偶極交互作用下的特性 | zh_TW |
dc.title | Ab initio study of the properties of Bose-Einstein condensates with dipolar interactions in an anisotropic Trap | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃克寧,管希聖 | |
dc.subject.keyword | 玻色愛因斯坦凝結,廣義擬似譜法,Gross-Pitaevskii 方程,散射長度,偶極, | zh_TW |
dc.subject.keyword | BEC,dipole,GPS method,Gross-Pitaevskii equation,double peaks, | en |
dc.relation.page | 48 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-14 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 3.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。