請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43903完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳希立 | |
| dc.contributor.author | Yi-Ting Li | en |
| dc.contributor.author | 李懿庭 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:32:14Z | - |
| dc.date.available | 2011-08-20 | |
| dc.date.copyright | 2009-08-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-14 | |
| dc.identifier.citation | 1. Phelan P., Chiriac V., Lee T.T., 'Current and Future Miniature Refrigeration Cooling Technologies for High Power Microelectronics,' Proceedings of the Seventeenth SEMI-THERM Symposium, IEEE, 2001, p. 158-167.
2. Schmidt R.R., Notohardjono B.D., 'High-end Server Low-Temperature Cooling,' IBM Journal of Research and Development 46, no. 6 (2002): 739-751. 3. Peeples J., 'Vapor Compression Cooling for High Performance Applications,' Electronics Cooling 7, no. 3, 2001. 4. J. S. Kolodzey, “Cray-1 computer technology,” IEEE Trans. Compon., Hybrids, Manufact. Technol., Vol. CHMT-4, No. 2, pp. 181-186, Jun. 1981. 5. Chow L.C., Ashraf N.S., Carter III H.C., Casey K., Corban S., Drost M.K., Gumm A.J., Hao Z., Hasan A.Q., Kapat J.S., Kramer L., Newton M., Sundaram K.B., Vaidya J., Wong C.C., Yerkes K., 'Design and Analysis of a Meso-Scale 79 Refrigerator,' Proceedings of the ASME International Mech. Eng. Congr. and Expos., ASME, 1999, p. 1-8. 6. Ellsworth M.J., Schmidt R.R., Angonafer D., 'Design and Analysis of a scheme to mitigate condensation on an assembly used to cool a processor module,' IBM Journal of Research and Development 46, no. 6 (2002): 753-761. 7. R. R. Schmidt and B. D. Notohardjono, “High-End server low-temperature cooling,” IBM J. Res. Develop., Vol. 46, pp. 739-751, 2002. 8. Heydari A., 'Miniature vapor compression refrigeration systems for active cooling of high performance computers,' Proceedings of the Inter Society Conference on Thermal Phenomena, IEEE, 2002, p. 371-378. 9. Maveety, J.G., et. al., “Thermal Management for Electronics Cooling Using a Miniature Compressor,” International Microelectronics and Packaging Society, Palo Alto, CA, October 24-26, 2002. 10. Phelan P.E., Swanson J., Chiriac F., Chiriac V., 'Designing a mesoscale vapor-compression refrigerator for cooling high-power microelectronics,' Proceedings of the Inter Society Conference on Thermal Phenomena, IEEE, 2004, p. 218-23. 11. Wadell R., Experimental Investigation of Compact Evaporators for Ultra Low Temperature Refrigeration of Microprocessors, M.S. Thesis, Georgia Institute of Technology, 2005. 12. Mongia R., Masahiro K., DiStefano E., Barry J., Weibo C., Izenson M., Possamai F., Zimmermann A., Mochizuki M., 'Small Scale Refrigeration System for Electronics Cooling within a Notebook Computer,' IEEE, 2006, p. 751-758. 13. Suwat Trutassanawin, Eckhard A. Groll, Suresh V. Garimella, and Lorenzo Cremaschi, “Experimental Investigation of a Miniature-Scale Refrigeration System for Electronics Cooling.” IEEE Transactions on components and packaging technologies, Vol. 29, No. 3, Sep. 2006. 14. A.G. Agwu Nnanna, “Application of refrigeration system in electronics cooling”, Applied Thermal Engineering 26 (2006) 18–27. 15. Charles Lee Coggins ,“Single- And Multiple-Stage Cascaded Vapor Compression Refrigeration For Electronics Cooling”, George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology ,2007. 16. Abhijit A Sathe, Eckhard A Groll and Suresh V Garimella,“Experimental evaluation of a miniature rotary compressor for application in electronics cooling”, Cooling Technologies Research Center, School of Mechanical Engineering, Purdue University, 2008. 17. P.E. Phelan and J. Swanson, “Designing a mesoscale vapor-compression refrigerator for cooling high-power microelectronic,” in Proc. Inter Soc. Conf. Thermal Themomech. Phenom. Electron. Syst. (I-THERM), Las Vegas, NV, Jun. 1-4, 2004, pp. 218-223. 2004. 18. S. L. Chen; F. M. Gerner; C. L. Tien; “General film condensation correlations” Department of Mechanical Engineering, University of California, Berkeley, 1987. 19. Yuan-Jan Du, Chi-Chuan Wang, “An experimental study of the airside performance of the superslit fin-and-tube heat exchangers”, International Journal of Heat and Mass Transfer, 2000. 20. Jaeseon Lee, Issam Mudawar, “Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part II—heat transfer characteristics,” International Journal of Heat and Mass Transfer Volume 48, Issue 5, February 2005, pp. 941-955. 21. Shuangquan Shao, Wenxing Shi, Xianting Li, Huajun Chen, “Performance representation of variable-speed compressor for inverter air conditioners based on experimental data”, International Journal of Refrigeration 27 , 2004, pp.805–815. 22. Jagdev Singh, Nirmal Singh, “Modeling and simulation for intelligent control of expansion valve in vapor compression refrigeration system”, Cybernetics and Systems, An International Journal 38, 2007, pp.411-427 23. R.N.N. Koury, L. Machado, K.A.R. Ismail, “Numerical simulation of a variable speed refrigeration system”, International Journal of Refrigeration 24 , 2001, pp.192-200. 24. S. Lee, “Calculating spreading resistance in heat sinks,” Electron Cooling, vol. 4, no. 1, 1998., pp. 30-33. 25. Eric M. Smith, Advances in Thermal Design of Heat Exchanger, 2005. 26. R.K. Shah, A.L. London, “Laminar Flow Forced Convection in Ducts: a Source Book for Compact Heat Exchanger Analytical Data,” Supl. 1, Academic Press, New York, 1978. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43903 | - |
| dc.description.abstract | 蒸氣壓縮循環系統是一具有高COP與強冷卻能力的冷卻系統,但目前的系統體積都還太大,在實際應用之前,需先把系統體積縮小。本研究的目的在於探討微型化的蒸氣壓縮系統的特性與各元件對於系統的影響。本研究主要分為兩個部份:穩態實驗與系統模擬。
在實驗方面,本研究設計並組裝一微型化蒸氣壓縮循環系統。系統整體重量約6公斤,系統之尺寸約為160×350×150mm3。設計完整的實驗方法與流程,分析加熱瓦數、膨脹閥開度與壓縮機轉速對系統性能之影響。實驗結果顯示本研究所開發之散熱系統最大冷卻能力為150W、COP由1.36~ 4.25。 在模擬方面,建構出一套能用來分析與預測的蒸氣壓縮循環系統的模擬程式。並針對冷凝器與蒸發器,討論相關冷凝鰭片尺寸與蒸發流道尺寸參數對於系統的影響。並利用此程式進行系統的最小化設計。模擬結果與實驗數據相當吻合,誤差在10%以內。 | zh_TW |
| dc.description.abstract | Vapor compression refrigeration system (VCRS) is a cooling system that has high COP and high cooling capacity. The research emphasizes on the characteristics of a miniature VCRS and how the experimental factors affect it. This research can be divided into two parts: steady state experiments and VCRS simulations.
In steady state experiments, a VCRS has been designed and assembled. The whole system is about 6 kg weight, and the size of the system is about 160×350×150 mm3. Experimental investigations are conducted to analyze that how the orifice of the expansion valve, heating watt and the rotational speed of the compressor affect the system performances. The results show that the system has a maximum cooling capacity 150W, and the COP of the system varies from 1.36 to 4.25. In VCRS simulation, a program is written to analyze and predict its performances. The program is used to analyze that how the size of the condenser and the evaporator influences the system performances. The errors of the simulations are less than 10%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:32:14Z (GMT). No. of bitstreams: 1 ntu-98-R96522110-1.pdf: 1365890 bytes, checksum: fc02e906c8e82aad4264229f4adc32ac (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III 目錄 IV 圖目錄 VII 表目錄 X 符號說明 XI 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 文獻回顧 3 1-4 研究目的 6 第二章 蒸氣壓縮循環原理 10 第三章 實驗設備及研究方法 17 3-1 系統說明 17 3-1.1. 系統元件說明 17 3-1.2. 實驗設備與量測儀器 21 3-1.3. 儀器校正 23 3-2 實驗參數 23 3-2.1. 穩態熱源加熱功率 23 3-2.2. 穩態膨脹閥開度 24 3-2.3. 穩態壓縮機轉速 24 3-3 實驗流程 26 3-3.1. 穩態實驗 26 3-3.2. 壓縮機變轉速實驗 27 3-4 誤差分析 27 第四章 蒸氣壓縮循環模擬 40 4-1 模擬方法 40 4-2 壓縮機性能 41 4-3 膨脹閥性能 43 4-4 冷凝器性能 44 4-4.1. 冷凝熱阻 44 4-4.2. 鰭片熱阻 45 4-5 蒸發器性能 48 4-5.1. 界面熱阻 48 4-5.2. 底板熱阻 48 4-5.3. 蒸發熱阻 49 第五章 結果與討論 58 5-1 穩態膨脹閥開度對系統之影響 58 5-1.1. 穩態膨脹閥開度對系統COP之影響 58 5-1.2. 穩態膨脹閥開度對質量流率之影響 59 5-1.3. 穩態膨脹閥開度對蒸發熱阻之影響 60 5-2 穩態加熱瓦數對系統之影響 60 5-2.1. 穩態加熱瓦數對系統COP之影響 60 5-2.2. 穩態加熱瓦數對系統過熱度之影響 61 5-2.3. 穩態加熱瓦數對蒸發熱阻之影響 62 5-3 系統結露現象分析 63 5-3.1. 低膨脹閥開度與低加熱瓦數對系統之影響 63 5-3.2. 壓縮機轉速對系統之影響 64 5-4 模擬結果 65 5-4.1. 壓縮機 65 5-4.2. 膨脹閥 66 5-4.3. 冷凝器 67 5-4.4. 蒸發器 68 5-4.5. 系統模擬 69 5-5 尺寸分析 71 5-6 系統設計 73 第六章 結論與建議 103 6-1 結論 103 6-2 建議 105 參考文獻 106 | |
| dc.language.iso | zh-TW | |
| dc.subject | 蒸氣壓縮循環 | zh_TW |
| dc.subject | 蒸氣壓縮循環模擬 | zh_TW |
| dc.subject | 最小化設計 | zh_TW |
| dc.subject | 微型化 | zh_TW |
| dc.subject | 電子散熱 | zh_TW |
| dc.subject | Minimizing design | en |
| dc.subject | Miniature | en |
| dc.subject | Vapor compression refrigeration cycle | en |
| dc.subject | Electronic cooling | en |
| dc.subject | Vapor compression refrigeration cycle simulation | en |
| dc.title | 微型化蒸氣壓縮循環電子散熱系統研究 | zh_TW |
| dc.title | Investigation of Miniature Vapor Compression Refrigeration System for Electronic Cooling | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 柯明村,李文興,張西龍 | |
| dc.subject.keyword | 微型化,蒸氣壓縮循環,電子散熱,蒸氣壓縮循環模擬,最小化設計, | zh_TW |
| dc.subject.keyword | Miniature,Vapor compression refrigeration cycle,Electronic cooling,Vapor compression refrigeration cycle simulation,Minimizing design, | en |
| dc.relation.page | 109 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
