Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43901
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞峰
dc.contributor.authorSHENG-CHY LUOen
dc.contributor.author羅聖棋zh_TW
dc.date.accessioned2021-06-15T02:32:10Z-
dc.date.available2009-08-18
dc.date.copyright2009-08-18
dc.date.issued2009
dc.date.submitted2009-08-14
dc.identifier.citation[1] A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, 'Cancer statistics, 2009,' CA Cancer J Clin, vol. 59, pp. 225-49, Jul-Aug 2009.
[2] V. A. McCormack and I. dos Santos Silva, 'Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis,' Cancer Epidemiol Biomarkers Prev, vol. 15, pp. 1159-69, Jun 2006.
[3] J. W. Byng, M. J. Yaffe, R. A. Jong, R. S. Shumak, G. A. Lockwood, D. L. Tritchler, and N. F. Boyd, 'Analysis of mammographic density and breast cancer risk from digitized mammograms,' Radiographics, vol. 18, pp. 1587-98, Nov-Dec 1998.
[4] N. F. Boyd, L. J. Martin, L. Sun, H. Guo, A. Chiarelli, G. Hislop, M. Yaffe, and S. Minkin, 'Body size, mammographic density, and breast cancer risk,' Cancer
Epidemiol Biomarkers Prev, vol. 15, pp. 2086-92, Nov 2006.
[5] N. Boyd, L. Martin, A. Gunasekara, O. Melnichouk, G. Maudsley, C. Peressotti, M. Yaffe, and S. Minkin, 'Mammographic density and breast cancer risk: evaluation of a novel method of measuring breast tissue volumes,' Cancer
Epidemiol Biomarkers Prev, vol. 18, pp. 1754-62, Jun 2009.
[6] N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, 'Mammographic density and the risk and detection of breast cancer,' N Engl J Med, vol. 356, pp. 227-36, Jan 18 2007.
[7] J. W. Byng, N. F. Boyd, E. Fishell, R. A. Jong, and M. J. Yaffe, 'The quantitative analysis of mammographic densities,' Phys Med Biol, vol. 39, pp. 1629-38, Oct 1994.
[8] K. Nie, J. H. Chen, S. Chan, M. K. Chau, H. J. Yu, S. Bahri, T. Tseng, O.Nalcioglu, and M. Y. Su, 'Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI,' Med Phys, vol. 35, pp.
5253-62, Dec 2008.
[9] N. A. Lee, H. Rusinek, J. Weinreb, R. Chandra, H. Toth, C. Singer, and G. Newstead, 'Fatty and fibroglandular tissue volumes in the breasts of women 20-83 years old: comparison of X-ray mammography and computer-assisted MR
imaging,' AJR Am J Roentgenol, vol. 168, pp. 501-6, Feb 1997.
[10] J. Yao, J. A. Zujewski, J. Orzano, S. Prindiville, and C. Chow, 'Classification and calculation of breast fibroglandular tissue volume on SPGR fat suppressed MRI,'
in Medical Imaging 2005: Image Processing, San Diego, CA, USA, 2005, pp. 1942-1949.
[11] M. Khazen, R. M. Warren, C. R. Boggis, E. C. Bryant, S. Reed, I. Warsi, L. J. Pointon, G. E. Kwan-Lim, D. Thompson, R. Eeles, D. Easton, D. G. Evans, and M. O. Leach, 'A pilot study of compositional analysis of the breast and estimation of breast mammographic density using three-dimensional T1-weighted magnetic resonance imaging,' Cancer Epidemiol Biomarkers Prev, vol. 17, pp. 2268-74, Sep 2008.
[12] J. Wei, H. P. Chan, M. A. Helvie, M. A. Roubidoux, B. Sahiner, L. M. Hadjiiski, C. Zhou, S. Paquerault, T. Chenevert, and M. M. Goodsitt, 'Correlation between
mammographic density and volumetric fibroglandular tissue estimated on breast MR images,' Med Phys, vol. 31, pp. 933-42, Apr 2004.
[13] C. Klifa, J. Carballido-Gamio, L. Wilmes, A. Laprie, C. Lobo, E. DeMicco, M. Watkins, J. Shepherd, J. Gibbs, and N. Hylton, 'Quantification of breast tissue index from MR data using fuzzy clustering,' in Engineering in Medicine and
Biology Society, 2004. IEMBS '04. 26th Annual International Conference of the IEEE, 2004, pp. 1667-1670.
[14] D. Kotsianos-Hermle, K. M. Hiltawsky, S. Wirth, T. Fischer, K. Friese, and M.
Reiser, 'Analysis of 107 breast lesions with automated 3D ultrasound and comparison with mammography and manual ultrasound,' Eur J Radiol, vol. 71, pp. 109-15, Jul 2009.
[15] E. Wenkel, M. Heckmann, M. Heinrich, S. A. Schwab, M. Uder, R. Schulz-Wendtland, W. A. Bautz, and R. Janka, 'Automated breast ultrasound: lesion detection and BI-RADS classification--a pilot study,' Rofo, vol. 180, pp. 804-8, Sep 2008.
[16] H. Fujita, Y. Uchiyama, T. Nakagawa, D. Fukuoka, Y. Hatanaka, T. Hara, G. N. Lee, Y. Hayashi, Y. Ikedo, X. Gao, and X. Zhou, 'Computer-aided diagnosis: the emerging of three CAD systems induced by Japanese health care needs,' Comput Methods Programs Biomed, vol. 92, pp. 238-48, Dec 2008.
[17] Y. Ikedo, D. Fukuoka, T. Hara, H. Fujita, E. Takada, T. Endo, and T. Morita, 'Development of a fully automatic scheme for detection of masses in whole breast ultrasound images,' Med Phys, vol. 34, pp. 4378-88, Nov 2007.
[18] R. F. Chang, K. C. Chang-Chien, E. Takada, J. S. Suri, W. K. Moon, J. H. Wu, N. Cho, Y. F. Wang, and D. R. Chen, 'Breast density analysis in 3-D whole breast ultrasound images,' Conf Proc IEEE Eng Med Biol Soc, vol. 1, pp. 2795-8, 2006.
[19] G. Ursin, M. A. Astrahan, M. Salane, Y. R. Parisky, J. G. Pearce, J. R. Daniels, M. C. Pike, and D. V. Spicer, 'The detection of changes in mammographic densities,' Cancer Epidemiology Biomarkers & Prevention, vol. 7, pp. 43-47, Jan 1998.
[20] E. Gigliotti, 'Discovering statistics using SPSS, 2nd edition,' Journal of Advanced Nursing, vol. 58, pp. 303-303, May 2007.
[21] A. Field, Discovering statistics using spss, 3rd ed. Thousand Oaks, CA: SAGE Publications, 2009.
[22] H. Madjar and E. B. Mendelson, The practice of breast ultrasound: Techniques, findings, differential diagnosis, 2nd ed. New York: Thieme Medical Publishers, 2008.
[23] S. Chuai-Aree, C. Lursinsap, P. Sophasathit, and S. Siripant, 'Fuzzy C-mean: A statistical feature classification of text and image segmentation method,'
International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, vol. 9, pp. 661-671, Dec 2001.
[24] Q. L. Sun, J. A. Hossack, J. S. Tang, and S. T. Acton, 'Speckle reducing anisotropic diffusion for 3D ultrasound images,' Computerized Medical Imaging and Graphics, vol. 28, pp. 461-470, Dec 2004.
[25] K. Nie, J. H. Chen, S. Chan, M. K. Chau, H. J. Yu, S. Bahri, T. Tseng, O. Nalcioglu, and M. Y. Su, 'Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI,' Medical Physics, vol. 35, pp. 5253-62, Dec 2008.
[26] W. Heiden and J. Brickmann, 'Segmentation of protein surfaces using fuzzy logic,' J Mol Graph, vol. 12, pp. 106-15, Jun 1994.
[27] M. T. Mandelson, N. Oestreicher, P. L. Porter, D. White, C. A. Finder, S. H. Taplin, and E. White, 'Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers,' J Natl Cancer Inst, vol. 92, pp. 1081-7, Jul 5 2000.
[28] L. Titus-Ernstoff, A. N. Tosteson, C. Kasales, J. Weiss, M. Goodrich, E. E. Hatch, and P. A. Carney, 'Breast cancer risk factors in relation to breast density (United
States),' Cancer Causes Control, vol. 17, pp. 1281-90, Dec 2006.
[29] G. Ursin and M. Pike, 'Mammographic density, hormone therapy, and risk of breast cancer,' Cancer Epidemiol Biomarkers Prev, vol. 15, p. 1750; author reply 1750, Sep 2006.
[30] C. M. Vachon, K. R. Brandt, K. Ghosh, C. G. Scott, S. D. Maloney, M. J. Carston, V. S. Pankratz, and T. A. Sellers, 'Mammographic breast density as a general marker of breast cancer risk,' Cancer Epidemiol Biomarkers Prev, vol. 16, pp. 43-9, Jan 2007.
[31] C. M. Vachon, V. S. Pankratz, C. G. Scott, S. D. Maloney, K. Ghosh, K. R. Brandt, T. Milanese, M. J. Carston, and T. A. Sellers, 'Longitudinal trends in mammographic percent density and breast cancer risk,' Cancer Epidemiol Biomarkers Prev, vol. 16, pp. 921-8, May 2007.
[32] M. Yaffe and N. Boyd, 'Mammographic breast density and cancer risk: the radiological view,' Gynecol Endocrinol, vol. 21 Suppl 1, pp. 6-11, Jul 2005.
[33] M. J. Yaffe, N. F. Boyd, J. W. Byng, R. A. Jong, E. Fishell, G. A. Lockwood, L. E. Little, and D. L. Tritchler, 'Breast cancer risk and measured mammographic density,' Eur J Cancer Prev, vol. 7 Suppl 1, pp. S47-55, Feb 1998.
[34] D. B. Kopans, 'Basic physics and doubts about relationship between mammographically determined tissue density and breast cancer risk,' Radiology, vol. 246, pp. 348-53, Feb 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43901-
dc.description.abstractBreast cancer is one of the most common malignancies in women and it continues to be a major cause of death among women worldwide. Several studies have shown that the women with dense breasts are at higher risk than the women whose breasts are less dense. Hence, breast density has to be accepted as a clinically highly significant
predictor of breast cancer risk. Most studies of breast density are performed on the mammographic images. Because the two-dimensional (2-D) mammographic density shows large variability, the three-dimension (3-D) breast magnetic resonance imaging (MRI) has been used in some recent studies for achieving more reasonable consistency.
Recently, a new technique, 3-D automatic breast ultrasound (ABUS) has been developed to acquire the whole breast images. The densities computed from the images of three different modalities, mammography, MRI, and ABUS, for the same patient will be compared in this paper. In order to analyze these three kinds of medical images, three different segmentation methods are used to find the breast region. Moreover, the fuzzy c-mean (FCM) classifier is used to analyze the breast densities of 3-D breast MRI and ABUS images. The experiments of 67 breasts from 40 patients show that the mammographic, ABUS, and breast MRI densities have high positive correlation and all of them could provide the useful breast density information to physician. The
correlation factor R2 of linear regression between mammographic and breast MRI images is up to 0.932. The correlation factor R2 between mammographic and ABUS images is 0.669 and the correlation factor R2 between breast MRI and ABUS images is 0.760.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:32:10Z (GMT). No. of bitstreams: 1
ntu-98-R96922076-1.pdf: 2371726 bytes, checksum: a3f68205580c985e698cfe85b2ad37c2 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsACKNOWLEDGEMENTS ...................................................................................................... ii
摘要 ......................................................................................................................................... iii
ABSTRACT .............................................................................................................................. v
TABLE OF CONTENT .......................................................................................................... vii
LIST OF FIGURES ................................................................................................................ viii
LIST OF TABLES ................................................................................................................... xi
Chapter 1 Introduction ............................................................................................................... 1
Chapter 2 Background ............................................................................................................... 3
2.1 Mammograms .................................................................................................................. 3
2.2 The Automated Breast Ultrasound .................................................................................. 4
2.3 Magnetic Resonance Imaging ......................................................................................... 7
Chapter 3 The Proposed Density Analysis Methods ................................................................. 9
3.1 Mammographic images ................................................................................................. 10
3.2 Automated Whole Breast Ultrasound Images ............................................................... 12
3.2.1 Pre-processing ........................................................................................................ 12
3.2.2 Breast Segmentation ............................................................................................... 15
3.3 3-D MRI Images ............................................................................................................ 16
3.4 Fuzzy C-Mean Classifier ............................................................................................... 19
Chapter 4 Experimental Result ................................................................................................ 23
4.1 Density and volume analysis for images of three modalities ........................................ 23
4.2 The Density and Volume Differences between Left and Right Breasts ........................ 30
Chapter 5 Conclusion and Future Work .................................................................................. 34
References ............................................................................................................................... 36
dc.language.isoen
dc.title乳房X 光、全乳房超音波及3 維核磁共振影像之密度分析zh_TW
dc.titleDensity Analysis of Mammograms, Whole Breast Ultrasound Images, and 3-D Breast MRI Imagesen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃俊升,張允中
dc.subject.keyword乳房密度,X光攝影,核磁共振攝影,超音波攝影,zh_TW
dc.subject.keywordbreast density,mammograhpy,MRI,ultrasound,en
dc.relation.page40
dc.rights.note有償授權
dc.date.accepted2009-08-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
2.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved