Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43870
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor易富國(Fu-Goul Yee)
dc.contributor.authorYuan-Fu Shaoen
dc.contributor.author邵元輔zh_TW
dc.date.accessioned2021-06-15T02:31:08Z-
dc.date.available2009-08-18
dc.date.copyright2009-08-18
dc.date.issued2009
dc.date.submitted2009-08-14
dc.identifier.citation[1] V. D. Angel, Interfacial Electrokinetucs and Electrophoresis (Surfactant Science Series Volume 106, 2002)
[2] M. Doi, and S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press Oxford, 1986)
[3] W. B. Russel, D. A. Saville, and W.R. Schowalter, Colloidal Dispersions (Cambridge University Press, 1989)
[4] M. Doi, and H.See, Introduction to Polymer Physics (Clarendon Press Oxford, 1995)
[5] J. P. Landers, Handbooks of Capillary Electrophoresis (CRC Press, 1996)
[6] A. Plecis, R. B. Schoch, and P. Renaud, Nano Lett. Vol. 5, 1174 (2005)
[7] R. B. Schoch, J. Han, and P. Renaud, Rev. Mod. Phys. Vol. 80, 839 (2008)
[8] P.-K. Lin, C.-C. Fu, Y.-L. Chen, Y.-R. Chen, P.-K. Wei, C. H. Kuan, and W. S. Fann, Physical Review E. Vol. 76, 011806 (2007)
[9] W. Kuhn, Kolloids Z. Vol.68, 2(1934)
[10] P. J. Flory, J. Chem. Phys. Vol. 17, 303(1949)
[11] P. J. Flory, Principles of Polymer Chemistry. Cornell Univ. Press, (1953)
[12] P.J. Flory, and M. Volkenstein, Biopolymers, Vol. 8, 699 (1969)
[13] M. Muthukumar, and B.G. Nickel, J. Chem. Phys. Vol. 47, 3991(1967)
[14] D. S. McKenzie, Phys. Rep. 27C, 35(1976)
[15] M. Daoud, and P. G. de Gennes, Journal De Physique Vol. 38, 85 (1977)
[16] U. K. Laemmli, Proc. Natl. Acad. Sci. USA. Vol. 72, 4288 (1975)
[17] M. Garcia-Ramírez, and J. Subirana, Biopolymers. Vol. 34, 285 (1994)
[18] M. W. Hsiang, and R. D. Cole, Proc. Natl. Acad. Sci. USA. Vol.74, 4852 (1977)
[19] D. K. Chattoraj, L. C. Gosule and J. A. Schellman, J. Mol. Biol. Vol. 121, 327 (1978)
[20] P. G. Arscott, C. Ma, J. Wenner and V. A. Bloomfield, Biopolymers. Vol. 36, 345 (1995)
[21] T. H. Eickbush, and E. N. Moudrianakis., Cell. Vol. 13, 295 (1976)
[22] D. Lang, J. Mol. Biol. Vol. 78, 247 (1973)
[23] G. E. Plum, P. G. Arscott, and V. A. Bloomfield., Biopolymers. Vol. 30, 631 (1990)
[24] A. Y. Grosberg, and A. R. Khokhlov, Statistical Physics of Macromolecules (American Institute of Physics, New York, 1994).
[25] A. Y. Grosberg, and D. V. Kuznetsov, Macromolecules. Vol. 25, 1970 (1992a)
[26] A. Y. Grosberg, and D. V. Kuznetsov, Macromolecules. Vol. 25, 1980 (1992b)
[27] A. Y. Grosberg, and D. V. Kuznetsov, Macromolecules. Vol. 25, 1991(1992c)
[28] A. Y. Grosberg, and D. V. Kuznetsov, Macromolecules. Vol. 25, 1996 (1992d)
[29] A. Y. Grosberg, and D. V. Kuznetsov, Macromolecules. Vol. 26, 4249 (1993)
[30] I. M. Lifshitz, A. Y. Grosberg, and A. R. Khokhlov, Rev. Mod. Phys. Vol. 50, 683 (1978)
[31] P. G. Arcott, A.-Z. Li, and V. A. Boomfield, Biopolymers, Vol. 30,619 (1990)
[32] I. Rouzina, and V. A. Bloomfield., Biophys. J. (1997)
[33] V. A. Bloomfield, Biopolymers, Vol. 31, 1471 (1991)
[34] S. He, P. G. Arscott, V. A. Bloomfield, Biopolymers, Vol. 53, 329 (2000)
[35] K. Yoshikawa, M. Takahashi, V. V. Vasilevskaya, and A. R. Khokhlov, PRL, Vol. 76, 3029 (1996)
[36] K. Yoshikawa, and Y. Matsuzawa, J. Am. Chem. Soc. Vol. 118, 929 (1996)
[37] J. Ubbink, and T. Odijk, Biophys. J. Vol. 68, 54 (1995)
[38] K. Yoshikawa, Y. Matsuzawa, Physica D. Vol. 84, 220 (1995)
[39] A. Sze, D. Erickson, L. Ren, and D. Li, Journal of Colloid and Interface Science Vol. 261, 402 (2003)
[40] D. C. Rau, B. Lee, and V. A. Parsegian, Proc. Natl. Acad. Sci. USA Vol. 81, 2621 (1984)
[41] D. C. Rau, and V. A. Parsegian, Biophys. J. Vol. 59, 611 (1991)
[42] R. Marquet, and C. Houssier. J. Biomol. Struct. Dynam. Vol. 9, 159 (1991)
[43] F. Oosawa, Biopolymers. Vol. 6,1633 (1968)
[44] F. Oosawa, Polyelectrolytes ( Marcel Dekker, New York, 1971)
[45] A. Holtzel, and U. Tallarek, J. Sep. Sci. Vol. 30, 1398 (2007)
[46] Y.-C. Wang, A. L. Stevens, and J. Han, Anal. Chem. Vol. 77, 4293 (2005)
[47] S. J. Kim, Y.-C. Wang, J. H. Lee, H. Jang, and J. Han, PRL Vol. 99, 044501 (2007)
[48] M. Krishnan, Z. Petrasek, I. Monch, and P. Schwille, Small Vol. 4, 1900 (2008)
[49] N. Yoshinaga, T. Akitaya, and K. Yoshikawa, Biochemical and Biophysics Research Communications, Vol. 286, 264 (2001)
[50] I. Rouzina and V. A. Bloomfield, Biophys. J. Vol. 74, 3152 (1998)
[51] D. J. Bonthuis, C. Meyer, D. Stein, and C. Dekker., PRL Vol. 101, 108303 (2008)
[52] B. Maier, and J. O. Radler, PRL Vol. 82, 1911 (1999)
[53] J. L. Viovy, Rev. Mod. Phys., Vol. 72, 813 (2000)
[54] G. W. Slater, Electrophoresis, Vol. 23, 3791 (2002)
[55] J. C. T. Eijkel, A.van den Berg, Electrophoresis, Vol. 27, 677 (2006)
[56] J. C. T. Eijkel, A. van den Berg, Lab on a Chip Vol. 6, 1 (2006)
[57] J. O. Tegenfeldt, C. Prinz, H. Cao, R. L. Huang, R. H. Austin, S. Y. Chou, E. C. Cox, J. C. Sturm, Anal. Bioanal. Chem., Vol. 378, 1678 (2004)
[58] R. Holzel, F.F. Bier, Nanobiotechnology, IEEE Proceedings, Vol. 150, 47 (2003)
[59] A. Majumdar, and P. Yang, Nano Lett., Vol. 8, 1785 (2008)
[60] R. Fan, R. Karnik, M. Yue, D. Li, Nano Lett., Vol. 5 1633 (2005)
[61] G. B. Anthony, J. Tang, and S. D. Patrick, Macromolecules, Vol. 41 9914 (2008)
[62] N. J. Petersen, D. Dutta, J. P. Alarie, and J.M. Ramsey, Microtas (2004)
[63] N. A. Mishchuk, S. S. Dukhin, J. Mem. Sci., Vol. 79, 199 (1993)
[64] S. J. Kim, Y. C. Wang, J. H. Lee, H. Jang, and J. Han, PRL Vol. 99, 044501 (2007)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43870-
dc.description.abstract本論文的內容是研究DNA在奈米結構中的行為。在奈米/微米流體系統中,表面對體積比遠較一般系統大,因此必須考慮表面的電學效應。另外、DNA本身的形狀受到邊界的限制而產生變化。此兩者的交互影響下使DNA在奈米結構裡的行為與自由溶液中有明顯的不同。
我們的研究分為兩個部分:多價正離子誘導DNA自發凝聚及電場對奈米結構中DNA操控。當多價正離子存在溶液中時,DNA會從自由延伸擾動的長鏈分子凝縮成極小超環形或柱形,此現象在過去已經有相當多的理論與實驗,但卻缺乏奈米結構對DNA凝縮的影響。在我們的實驗中我們發現DNA凝縮的現象會隨著邊界限制改變,限制越強時凝縮的時間就會增加。我們認為增加的部分是來自於在de Gennes regime中鬆弛時間的增加導致凝縮需要較長的時間。但其中應該還牽涉了更多其他的效應,必須藉由更進一步的研究來確認。
第二個部分是有關奈米結構中的DNA在電場下的運動行為。自由溶液中、DNA受到電場時的行為可以完全由電泳理論決定。但在奈米結構中DNA在電場下的運動遠較前者複雜。此時,EOF、濃度極化、表面電導還有許多相關的效應都必須加以考慮。我們在這部份的工作就是研究奈米結構中DNA在電場下的運動行為,並且整理各個尺度下的主要影響的因子。此外、我們在研究的過程中發現了過去所沒有發現的DNA回流現象。
zh_TW
dc.description.abstractThis thesis is focus on the studying of DNA behaviors in nanoconfinement. In nano/micro fluidic systems, the surface to volume ratio becomes too large to neglect the electrokinetics on the surface. And in nanoconfinement, DNA is forced to be confined to a limit region. This changes the conformation and transport mechanism of DNA and generates lots of novel phenomena.
We studied two separate parts: DNA condensation induced by multivalent ions and DNA transport induced by electric field in nanostructures. DNA condensation is a well-known phenomenon. The free-coil-chain-like conformation of DNA transforms to condensed toroid or rod in the existence of multivalent ions. In our experiment, we studied the influence of confinement to DNA condensation. We found that DNA condensation process is slower in strong confinement than in free solution in de Gennes regime. This can be partly explained by the increasing relaxation time in strong confinement.
The second part is DNA transport in nanostructures induced by electric field. In free solutions, DNA transport under electric field can be fully explained by electrophoresis. Though in nanostructures, DNA transport is more complicated than that in free solutions. EOF, concentration polarization, surface conductance, DNA trapping, and lots of other effect should be taken into considerations. We categorize DNA transport in nanostructures induced by electric field and try to clarify the main factors that participate in. In free solutions or microchannels, DNA transport is dominated by electrophoresis. However, in nanostructures EOF may strong enough to dominate the transport direction. And in stronger confinement, we have to take EOF of the second kind and concentration polarization into considerations.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:31:08Z (GMT). No. of bitstreams: 1
ntu-98-R96222050-1.pdf: 6029169 bytes, checksum: 6d7fa7672244a325b12e2190284b7d14 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsCertificate of Approval…………………………………………… i
Acknowledgement…………………………………………………... ii
Abstract………………………………………………………………iii
List of Figures……………………………………………………………… v
Chapter 1. Introduction………………………………………………1
1.1 Micro/Nano Fluidic Systems and Single DNA Experiments in
Nanostructures……………………………………………………....1
1.2 Motivation………………………………………………………2
Chapter 2. Theories…………………………………………………4
2.1 Static Model for DNA…………………………………………4
Models of Free Polymer Chain………………………………………4
Excluded Volume Effect………………………………………………7
Radius of Gyration…………………………………………………….9
Static Scaling in Quasi-2D Nanoslits……………………………10
2.2 DNA Condensation by Multivalent Counterion-……………12
Statical Analysis of Polymer Condensation……………………13
Forces in DNA Condensation…………………………………………15
2.3 Microfluidic Electrophoresis & Ions transportation inside nanostructures....................................20
Poisson–Boltzmann equation……………………………………21
Electrical Double Layer……………………………………………22
Electrophoresis………………………………………………………25
Electroosmic flow……………………………………………………27
EOF of the second kind………………………………………………28
Concentration Polarization ………………………………………29
DNA Self Trapping in Nanofluidic Device………………………32
Chapter 3. System of Experiment………………………35
3.1 DNA sample and buffer solution preparation………………35
3.2 Chips Fabrications………………………………………………36
3.3 System Alignment…………………………………………………37
3.4 Data Analysis……………………………………………………38
Chapter 4. DNA Condensation with Multivalent Ions40
4.1 Experiment Method……………………………………………41
4.2 Result and Discussion…………………………………………42
Chapter 5. DNA Transport in Nanostructures induced by elextric field……....................................50
5.1 Chips Design………………………………………………………51
5.2 Result and Discussion…………………………………………52
Chapter 6. Summary……………………………………………………68
Reference………………………………………………………………70
Appendix
dc.language.isoen
dc.subject多價離子zh_TW
dc.subject電雙層zh_TW
dc.subject電泳zh_TW
dc.subject濃度極化zh_TW
dc.subject奈米結構zh_TW
dc.subjectDNA凝縮zh_TW
dc.subjectnanoconfinementen
dc.subjectconcentration polarizationen
dc.subjectEOFen
dc.subjectelectrophoresisen
dc.subjectelectrical double layeren
dc.subjectmultivalent ionen
dc.subjectDNA condensationen
dc.title多價正離子誘導DNA自發凝聚及電場對奈米結構中DNA操控zh_TW
dc.titleDNA Condensation with Multivalent ions and Electrical Manipulation in Nanostructuresen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曹培熙(Pei-Hsi Tsao),陳彥龍(Yeng-Long Chen)
dc.subject.keyword奈米結構,DNA凝縮,多價離子,電雙層,電泳,濃度極化,zh_TW
dc.subject.keywordnanoconfinement,DNA condensation,multivalent ion,electrical double layer,electrophoresis,EOF,concentration polarization,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2009-08-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
5.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved