請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43864完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐陽明 | |
| dc.contributor.author | Yi-Shan Cheng | en |
| dc.contributor.author | 鄭亦珊 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:30:57Z | - |
| dc.date.available | 2011-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-17 | |
| dc.identifier.citation | [1] T. Ahonen, A. Hadid, and M. Pietikainen. Face Description with Local Binary Patterns: Application to Face Recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28, 12 2006), 2037-2041.
[2] T. Ahonen, A. Hadid, and M. Pietikainen. Face recognition with local binary patterns. In Proc. 8th European Conference on Computer Vision, ser. Lecture Notes in Computer Science, vol. 3021. Springer, 2004, pp. 469–481 [3] T. Ahonen, M. Pietikainen, and A. Hadid, and T. Maenpaa. Face recognition based on the appearance of local regions. In ICPR ’04: Proceedings of the Pattern Recognition, 17th International Conference on (ICPR ’04) Volume 3, pages 153-156, Washinton, DC, USA, 2004. IEEE Computer Society. [4] C. Darwin, The Expression of the Emotions in Man and Animals, J. Murray, London, 1872. [5] P. Ekman and W. V. Friesen, “Constants across cultures in the face and emotion,” Journal of Personality and Social Psychology, vol. 17, pp.124-129, 1971. [6] J. L. Flatley. (2010, Dec, 23). Cambridge developing 'mind reading' computer interface with the countenance of Charles Babbage, [Online]. Available: http://www.engadget.com/2010/12/23/cambridge-developing-mind-reading-computer-interface-with-the/ [7] Yuchun Fang and Zhan Wang. Improving LBP features for gender classification. In Wavelet Analysis and Pattern Recognition, 2008 ICWAPR ’08. International Conference on, volume 1, pages 373-377, Aug. 2008. [8] Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, August 1997. [9] L. He, C. Zou, L. Zhao and D. Hu, An enhanced LBP feature based on facial expression recognition, In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pages 3300-3303, September 2005. [10] H. C. Lian and B. L. Lu. Multi-view gender classification using multi-resolution local binary patterns and support vector machines. International Journal of Neural System, 17(6):479-487, 2007 [11] G. Littlewort, M. Bartlett, I. Fasel, J. Susskind, and J. Movellan. Dynamics of facial expression extracted automatically from video. Image and Vision Computing, 24(6):615–625, June 2006. [12] Microsoft. Avatar Kinect, (2011). [Online]. Available: http://www.xbox.com/zh-TW/Kinect/KinectAvatars [13] T. Ojala, M. Pietikäinen, and D. Harwood. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29, 1 1996), 51-59. [14] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24, 7 2002), 971-987. [15] M. Pietikäinen, T. Ojala, and Z. Xu. Rotation-invariant texture classification using feature distributions. Pattern Recognition, 33, 1 2000), 43-52. [16] C. Shan, S. Gong, and P.W. McOwan. Facial expression recognition based on local binary patterns: A comprehensive study. Image and Visual Computing, 27(6):803-816, 2009. [17] C. Shan, S. Gong, and P.W. McOwan, “Robust Facial Expression Recognition Using Local Binary Patterns,” Proc. IEEE Int'l Conf. Image Procession, pp. 370-373, 2005. [18] M. Suwa, N. Sugie, and K. Fujimora. A preliminary note on pattern recognition of human emotional expression. In International Joint Conference on Pattern Recognition, pages 408–410, 1978. [19] Y. Tian, T. Kanade, and J. Cohn. Handbook of Face Recognition, chapter 11. Facial Expression Analysis. Springer, 2005. [20] M. Valstar and M. Pantic. Fully automatic facial action unit detection and temporal analysis. In IEEE Conference on Computer Vision and Pattern Recognition Workshop, page 149, 2006. [21] C. Zhan, W. Li, F. Safaei, and P. Ogunbona, “Emotional states control for on-line game avatars,” in Proc. of the 6th ACM SIGCOMM workshop on Network and system support for games, 2007, pp. 31-36. [22] J. Zhao, H. Wang, H. Ren, and S.C. Kee. LBP discriminant analysis for face verification. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’05) – Workshops, page 167. IEEE Computer Society, 2005. [23] G. Zhao and M. Pietikainen. Dynamic texture recognition using local binary patterns with an application to facial expression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):915-928, june 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43864 | - |
| dc.description.abstract | 傳統的人臉表情辨識已經被研究多時,也有許多應用,如:數位相機這類的科技產品上、網路相片管理軟體…等。其中偵測臉部的方法不一,辨識表情的方式也各有所異,雖然準確度已能達到水準之上,仍無法突破至九成以上,故若應用表情辨識來做為動畫的工具仍顯不足,必須對辨識機制有所改進。因此,在這篇論文中,我們提出一套針對個人化的系統來辨識專屬於使用者各自的表情,以自動化的人臉偵測校正人臉,建出專屬於使用者個人化的資料庫,並搭配區域二元圖樣(Local Binary Pattern)的方法,即時對於網絡攝像機前的使用者進行表情辨識。
在動畫產業上,有許多擬真人的動畫人物需要豐富的表情,若是在演員直接做表情之下能準確判別其表情;或者在演員無法做出較誇張或不容易表現的表情時,能有效的判斷出並對應到動畫人物,應用其對應的表情來完成動畫,那麼動畫人物的操作將會方便許多,且更為生動。 | zh_TW |
| dc.description.abstract | In this thesis, we propose a personalized system for facial expression recognition. Since our target is for avatar control or puppet control, we have adopted a very different approach. First, the user number is limited and personalized, and therefore our approach deviates away from traditional facial expression recognition approaches because the latter are targeted for any kind of subjects. Second, our approach is for personal use and there is a mapping between one’s facial expressions and the actual expressions of the avatar. Therefore, very exquisite facial expressions of the avatar such as awkwardness and evil smile etc. can be done while traditional facial expression system is targeted toward recognizing the regular six expressions. Furthermore, since we were using personalized expressions, and therefore we can optimize the weighting function of the recognition kernel such as Local Binary Patterns to increase the inter-class distance while reducing the intra-class distance. As a result, our recognition rate for personalized data can be close to 100% rate for the standard six expressions, while the reported data for general purpose systems were around 85%. In our system, more than 6 regular expressions, actually up to 12, can be used, and the recognition rate is still at 92% based on data from performers. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:30:57Z (GMT). No. of bitstreams: 1 ntu-100-R98922073-1.pdf: 2767675 bytes, checksum: 421abea57aa7e3db9ae270a5d6f89d44 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Motivation 1 1.2 System Overview 3 1.3 Thesis Organization 5 Chapter 2 Related Works 6 2.1 Algorithm for Facial Expression Recognition 6 2.2 Local Binary Pattern 8 2.3 Avatar Kinect 10 Chapter 3 Algorithm 12 3.1 Face Detection and Normalization 12 3.2 Window size and cutting method 13 3.3 Facial Expression Representation 14 3.4 Personalized Weighting Learning 17 Chapter 4 Facial Expression Recognition System 20 4.1 System Mechanism 20 4.2 Registration Phase 20 4.3 Identification Phase 23 4.4 User Interfaces 23 Chapter 5 Result and User Study 25 5.1 Results 25 5.2 User Study 30 Chapter 6 Conclusion and Future Work 33 6.1 Conclusion 33 6.2 Future Work 34 Bibliography 36 Resume 40 | |
| dc.language.iso | en | |
| dc.subject | 區域二元圖樣 | zh_TW |
| dc.subject | 頭像控制 | zh_TW |
| dc.subject | 表情辨識 | zh_TW |
| dc.subject | Personalized Avatar Control | en |
| dc.subject | Local Binary Patterns | en |
| dc.subject | Facial Expression Recognition | en |
| dc.title | 以個人化表情辨識系統來實現虛擬頭像控制 | zh_TW |
| dc.title | A Real-time Personalized Facial Expression Recognition System for Avatar Control | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊傳凱,傅楸善 | |
| dc.subject.keyword | 頭像控制,表情辨識,區域二元圖樣, | zh_TW |
| dc.subject.keyword | Personalized Avatar Control,Facial Expression Recognition,Local Binary Patterns, | en |
| dc.relation.page | 40 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
