Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43864
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor歐陽明
dc.contributor.authorYi-Shan Chengen
dc.contributor.author鄭亦珊zh_TW
dc.date.accessioned2021-06-15T02:30:57Z-
dc.date.available2011-08-22
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-17
dc.identifier.citation[1] T. Ahonen, A. Hadid, and M. Pietikainen. Face Description with Local Binary Patterns: Application to Face Recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28, 12 2006), 2037-2041.
[2] T. Ahonen, A. Hadid, and M. Pietikainen. Face recognition with local binary patterns. In Proc. 8th European Conference on Computer Vision, ser. Lecture Notes in Computer Science, vol. 3021. Springer, 2004, pp. 469–481
[3] T. Ahonen, M. Pietikainen, and A. Hadid, and T. Maenpaa. Face recognition based on the appearance of local regions. In ICPR ’04: Proceedings of the Pattern Recognition, 17th International Conference on (ICPR ’04) Volume 3, pages 153-156, Washinton, DC, USA, 2004. IEEE Computer Society.
[4] C. Darwin, The Expression of the Emotions in Man and Animals, J. Murray, London, 1872.
[5] P. Ekman and W. V. Friesen, “Constants across cultures in the face and emotion,” Journal of Personality and Social Psychology, vol. 17, pp.124-129, 1971.
[6] J. L. Flatley. (2010, Dec, 23). Cambridge developing 'mind reading' computer interface with the countenance of Charles Babbage, [Online]. Available: http://www.engadget.com/2010/12/23/cambridge-developing-mind-reading-computer-interface-with-the/
[7] Yuchun Fang and Zhan Wang. Improving LBP features for gender classification. In Wavelet Analysis and Pattern Recognition, 2008 ICWAPR ’08. International Conference on, volume 1, pages 373-377, Aug. 2008.
[8] Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, August 1997.
[9] L. He, C. Zou, L. Zhao and D. Hu, An enhanced LBP feature based on facial expression recognition, In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pages 3300-3303, September 2005.
[10] H. C. Lian and B. L. Lu. Multi-view gender classification using multi-resolution local binary patterns and support vector machines. International Journal of Neural System, 17(6):479-487, 2007
[11] G. Littlewort, M. Bartlett, I. Fasel, J. Susskind, and J. Movellan. Dynamics of facial expression extracted automatically from video. Image and Vision Computing, 24(6):615–625, June 2006.
[12] Microsoft. Avatar Kinect, (2011). [Online]. Available: http://www.xbox.com/zh-TW/Kinect/KinectAvatars
[13] T. Ojala, M. Pietikäinen, and D. Harwood. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29, 1 1996), 51-59.
[14] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24, 7 2002), 971-987.
[15] M. Pietikäinen, T. Ojala, and Z. Xu. Rotation-invariant texture classification using feature distributions. Pattern Recognition, 33, 1 2000), 43-52.
[16] C. Shan, S. Gong, and P.W. McOwan. Facial expression recognition based on local binary patterns: A comprehensive study. Image and Visual Computing, 27(6):803-816, 2009.
[17] C. Shan, S. Gong, and P.W. McOwan, “Robust Facial Expression Recognition Using Local Binary Patterns,” Proc. IEEE Int'l Conf. Image Procession, pp. 370-373, 2005.
[18] M. Suwa, N. Sugie, and K. Fujimora. A preliminary note on pattern recognition of human emotional expression. In International Joint Conference on Pattern Recognition, pages 408–410, 1978.
[19] Y. Tian, T. Kanade, and J. Cohn. Handbook of Face Recognition, chapter 11. Facial Expression Analysis. Springer, 2005.
[20] M. Valstar and M. Pantic. Fully automatic facial action unit detection and temporal analysis. In IEEE Conference on Computer Vision and Pattern Recognition Workshop, page 149, 2006.
[21] C. Zhan, W. Li, F. Safaei, and P. Ogunbona, “Emotional states control for on-line game avatars,” in Proc. of the 6th ACM SIGCOMM workshop on Network and system support for games, 2007, pp. 31-36.
[22] J. Zhao, H. Wang, H. Ren, and S.C. Kee. LBP discriminant analysis for face verification. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’05) – Workshops, page 167. IEEE Computer Society, 2005.
[23] G. Zhao and M. Pietikainen. Dynamic texture recognition using local binary patterns with an application to facial expression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):915-928, june 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43864-
dc.description.abstract傳統的人臉表情辨識已經被研究多時,也有許多應用,如:數位相機這類的科技產品上、網路相片管理軟體…等。其中偵測臉部的方法不一,辨識表情的方式也各有所異,雖然準確度已能達到水準之上,仍無法突破至九成以上,故若應用表情辨識來做為動畫的工具仍顯不足,必須對辨識機制有所改進。因此,在這篇論文中,我們提出一套針對個人化的系統來辨識專屬於使用者各自的表情,以自動化的人臉偵測校正人臉,建出專屬於使用者個人化的資料庫,並搭配區域二元圖樣(Local Binary Pattern)的方法,即時對於網絡攝像機前的使用者進行表情辨識。
在動畫產業上,有許多擬真人的動畫人物需要豐富的表情,若是在演員直接做表情之下能準確判別其表情;或者在演員無法做出較誇張或不容易表現的表情時,能有效的判斷出並對應到動畫人物,應用其對應的表情來完成動畫,那麼動畫人物的操作將會方便許多,且更為生動。
zh_TW
dc.description.abstractIn this thesis, we propose a personalized system for facial expression recognition. Since our target is for avatar control or puppet control, we have adopted a very different approach. First, the user number is limited and personalized, and therefore our approach deviates away from traditional facial expression recognition approaches because the latter are targeted for any kind of subjects. Second, our approach is for personal use and there is a mapping between one’s facial expressions and the actual expressions of the avatar. Therefore, very exquisite facial expressions of the avatar such as awkwardness and evil smile etc. can be done while traditional facial expression system is targeted toward recognizing the regular six expressions. Furthermore, since we were using personalized expressions, and therefore we can optimize the weighting function of the recognition kernel such as Local Binary Patterns to increase the inter-class distance while reducing the intra-class distance. As a result, our recognition rate for personalized data can be close to 100% rate for the standard six expressions, while the reported data for general purpose systems were around 85%. In our system, more than 6 regular expressions, actually up to 12, can be used, and the recognition rate is still at 92% based on data from performers.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:30:57Z (GMT). No. of bitstreams: 1
ntu-100-R98922073-1.pdf: 2767675 bytes, checksum: 421abea57aa7e3db9ae270a5d6f89d44 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 System Overview 3
1.3 Thesis Organization 5
Chapter 2 Related Works 6
2.1 Algorithm for Facial Expression Recognition 6
2.2 Local Binary Pattern 8
2.3 Avatar Kinect 10
Chapter 3 Algorithm 12
3.1 Face Detection and Normalization 12
3.2 Window size and cutting method 13
3.3 Facial Expression Representation 14
3.4 Personalized Weighting Learning 17
Chapter 4 Facial Expression Recognition System 20
4.1 System Mechanism 20
4.2 Registration Phase 20
4.3 Identification Phase 23
4.4 User Interfaces 23
Chapter 5 Result and User Study 25
5.1 Results 25
5.2 User Study 30
Chapter 6 Conclusion and Future Work 33
6.1 Conclusion 33
6.2 Future Work 34
Bibliography 36
Resume 40
dc.language.isoen
dc.subject區域二元圖樣zh_TW
dc.subject頭像控制zh_TW
dc.subject表情辨識zh_TW
dc.subjectPersonalized Avatar Controlen
dc.subjectLocal Binary Patternsen
dc.subjectFacial Expression Recognitionen
dc.title以個人化表情辨識系統來實現虛擬頭像控制zh_TW
dc.titleA Real-time Personalized Facial Expression Recognition System for Avatar Controlen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊傳凱,傅楸善
dc.subject.keyword頭像控制,表情辨識,區域二元圖樣,zh_TW
dc.subject.keywordPersonalized Avatar Control,Facial Expression Recognition,Local Binary Patterns,en
dc.relation.page40
dc.rights.note有償授權
dc.date.accepted2011-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved