請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43860
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林發暄(Fa-Hsuan Lin) | |
dc.contributor.author | Su-Chun Huang | en |
dc.contributor.author | 黃素君 | zh_TW |
dc.date.accessioned | 2021-06-15T02:30:49Z | - |
dc.date.available | 2009-08-18 | |
dc.date.copyright | 2009-08-18 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-14 | |
dc.identifier.citation | Basser, P. J., Mattiello, J., & LeBihan, D. (1994a). Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B, 103(3), 247-254.
Basser, P. J., Mattiello, J., & LeBihan, D. (1994b). MR diffusion tensor spectroscopy and imaging. Biophys J, 66(1), 259-267. Basser, P. J., & Pajevic, S. (2000). Statistical artifacts in diffusion tensor MRI (DT-MRI) caused by background noise. Magn Reson Med, 44(1), 41-50. Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B, 111(3), 209-219. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 34(4), 537-541. Conturo, T. E., Lori, N. F., Cull, T. S., Akbudak, E., Snyder, A. Z., Shimony, J. S., et al. (1999). Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A, 96(18), 10422-10427. Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., & Shulman, G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci, 3(3), 292-297. Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., et al. (2006). Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A, 103(37), 13848-13853. Dosenbach, N. U., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A., et al. (2007). Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A, 104(26), 11073-11078. Douek, P., Turner, R., Pekar, J., Patronas, N., & Le Bihan, D. (1991). MR color mapping of myelin fiber orientation. J Comput Assist Tomogr, 15(6), 923-929. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci, 8(9), 700-711. Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp, 26(1), 15-29. Fransson, P. (2006). How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia, 44(14), 2836-2845. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A, 100(1), 253-258. Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex, 19(1), 72-78. Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci, 2(10), 685-694. Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., et al. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci U S A, 106(6), 2035-2040. Jones, D. K. (2008). Tractography gone wild: probabilistic fibre tracking using the wild bootstrap with diffusion tensor MRI. IEEE Trans Med Imaging, 27(9), 1268-1274. Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., et al. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A, 89(12), 5675-5679. Lin, C. P., Wedeen, V. J., Chen, J. H., Yao, C., & Tseng, W. Y. (2003). Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms. NeuroImage, 19(3), 482-495. Lowe, M. J., Dzemidzic, M., Lurito, J. T., Mathews, V. P., & Phillips, M. D. (2000). Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. NeuroImage, 12(5), 582-587. Makris, N., Kennedy, D. N., McInerney, S., Sorensen, A. G., Wang, R., Caviness, V. S., Jr., et al. (2005). Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex, 15(6), 854-869. Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering minds: the default network and stimulus-independent thought. Science, 315(5810), 393-395. Mori, S., & van Zijl, P. C. (2002). Fiber tracking: principles and strategies - a technical review. NMR Biomed, 15(7-8), 468-480. Morris, R., Petrides, M., & Pandya, D. N. (1999). Architecture and connections of retrosplenial area 30 in the rhesus monkey (Macaca mulatta). Eur J Neurosci, 11(7), 2506-2518. Northoff, G., & Bermpohl, F. (2004). Cortical midline structures and the self. Trends Cogn Sci, 8(3), 102-107. Northoff, G., Heinzel, A., de Greck, M., Bermpohl, F., Dobrowolny, H., & Panksepp, J. (2006). Self-referential processing in our brain--a meta-analysis of imaging studies on the self. NeuroImage, 31(1), 440-457. Ogawa, S., Lee, T. M., Nayak, A. S., & Glynn, P. (1990). Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med, 14(1), 68-78. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proc Natl Acad Sci U S A, 98(2), 676-682. Suzuki, W. A., & Amaral, D. G. (1994). Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol, 350(4), 497-533. Tuch, D. S. (2004). Q-ball imaging. Magn Reson Med, 52(6), 1358-1372. van den Heuvel, M., Mandl, R., Luigjes, J., & Hulshoff Pol, H. (2008). Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J Neurosci, 28(43), 10844-10851. van den Heuvel, M. P., Mandl, R. C., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp. Wakana, S., Jiang, H., Nagae-Poetscher, L. M., van Zijl, P. C., & Mori, S. (2004). Fiber tract-based atlas of human white matter anatomy. Radiology, 230(1), 77-87. Wedeen, V. J., Hagmann, P., Tseng, W. Y., Reese, T. G., & Weisskoff, R. M. (2005). Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med, 54(6), 1377-1386. Wiegell, M. R., Larsson, H. B., & Wedeen, V. J. (2000). Fiber crossing in human brain depicted with diffusion tensor MR imaging. Radiology, 217(3), 897-903. Wise, R. G., Ide, K., Poulin, M. J., & Tracey, I. (2004). Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. NeuroImage, 21(4), 1652-1664. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43860 | - |
dc.description.abstract | 平靜狀態功能性磁振造影研究中學者發現,血氧濃度相依對比訊號的低頻震盪在大腦中許多分散區域間有時間上的相關性,這些時間上的相關性被認為反映出大腦內部迴路中關於思考、情緒、認知、運動等功能的連結性,這些內部迴路被稱為平靜狀態迴路。在這些內部迴路之中有一個迴路在平靜狀態時表現出最強的功能連結,這個迴路所包含的區域有左右側後扣帶回�楔前葉區、左右側前額葉區、及左右側下頂葉區,此迴路被稱為人腦的預設模式迴路。為了找到預設模式迴路所相對應的結構連結,必須使用高角度解析度的擴散磁振造影方法來正確重建大腦內神經交錯區域的神經走向。
本研究結合擴散頻譜磁振造影以及平靜狀態功能性磁振造影來重建預設模式迴路所對應的結構連結,四名自願者參與了本研究,每位受試者均接受以下三種磁振影像掃描:擴散頻譜磁振造影、平靜狀態功能性磁振造影、以及T2權重影像。我們發現數條解剖上已知的白質神經纖維參與了預設模式回路肩的信息傳遞。同側腦區間連結由以下三組連結形成:前額葉和後扣帶回�楔前葉區間由扣帶回以及上縱束的第一分枝所連結;而楔前葉和下頂葉區則是由皮質間的弓狀纖維所連結;前額葉和下頂葉區由額葉枕葉束連結。對側腦區間連結部份,左右側前額葉由胼胝體膝狀體所連結,左右側下頂葉、左右側後扣帶回�楔前葉區間則是由胼胝體壓部所連結。 本研究建立了一套標準作業流程來分析平靜狀態功能性磁振造影及擴散頻譜磁振造影,未來會將此分析平台應用於觀察精神分裂症在兩種影像技術下的影像特徵,期望能夠找到足以診斷精神分裂症的影像生物標記。 | zh_TW |
dc.description.abstract | Resting-state functional magnetic resonance imaging (fMRI) demonstrated that the low frequency fluctuation of blood oxygen level-dependent (BOLD) showed temporal correlation of widely separated brain regions during rest. The temporal correlations are considered to reflect the inherence functional connectivity of brain network which corresponding to thought, intended speech and emotions. These networks were called resting-state networks (RSNs). One RSN showed highest functional connectivity during rest, the network including brain regions such as posterior cingulum /precuneus cortex (PCC), medial prefrontal lobe (MF), left and right inferior parietal lobes (IPL and IPR) are considered as brain default network work (DMN).
In order to find the structural core of MDN, we employ a diffusion acquisition scheme at high angular resolution which capable to reconstruct complex intra-voxel fiber structure. In the present study, we combined diffusion spectrum image (DSI) and resting-state fMRI to reconstruct the whole structural network within DMN. Four right-handed adults were recruited in the study. All images were acquired on a 3T MRI system (Trio, Siemens, Erlangen, Germany). The acquisition protocol including (1) resting-state fMRI with a gradient echo EPI. Patients were asked to stare a cross in the middle of the screen. (2) DSI with a spin-echo diffusion EPI. (3) trans-axial T2-weighted image with spin echo sequence. We found that within DMN, existing known structural white matter connections between almost all DMN nodes. The MFC and PCC were connected by cingulum bundle and one branch of superior longitudinal fasciculus. The PCC and bilateral inferior parietal lobe were connected by cortico-cortical arcuate fibers. The MFC and bilateral inferior parietal lobe were connected by fronto-occipital fasciculus. Bilateral inferior parietal lobes and bilateral PCC regions were connected by splenium of corpus callosum. The bilateral MFC were connected by genu of corpus callosum. In the present we established a standard operation protocol (SOP) to analyze resting-state fMRI and DSI images. Future work is aim to apply the SOP to images of schizophrenia patients, to observe pathological changes on images. We are looking forward to find an image biomarker to diagnose schizophrenia. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:30:49Z (GMT). No. of bitstreams: 1 ntu-98-R96548059-1.pdf: 1268129 bytes, checksum: 7f2604fc696ca3bb634393b530ee4628 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員會審定書…………………………………………………………………….i
Acknowledgements …………………………………………………………………...5 Chinese Abstract ………….…………………………………………………………...6 English Abstract …………………………………………………………………..…..7 Chatper 1 Introduction……….…………………………………………………...…...9 1.1 Default Mode Network ………………. ………………………...…….….....9 1.1.1 Resting-state network ………………………………………………...9 1.1.2 Functional Connectivity in DMN …………………..…………….....10 1.1.3 Structural Connectivity in DMN ……………………………………11 1.1.4 Structural Connectivity and Functional Connectivity in DMN ……..12 1.2 Diffusion spectrum Imaging …………………………………………….....13 1.2.1 What Is Diffusion? ……………………………………………….....13 1.2.2 Diffusion MRI ………………………………………………………13 1.2.3 Diffusion Tensor Imaging …………………………………………...14 1.2.4 Diffusion Spectrum Imaging ………………………………………..15 1.2.5 Tractography ………………………………………………………...16 1.3 Literature Review ……………………………………………… ………….18 1.4 Study Motivation and Study Purpose……………………………………….21 1.5 Research Aims …………………………………………………………...…24 Chapter 2 Materials and Methods…………………………………………………....25 2.1 Subjects ………….……………………. ………………………...…….…..25 2.2 MR Protocol ………………….…………………………………………….25 2.3 fMRI Data Processing ………………………...……………………...…….27 2.4 DSI Data Processing ……………………………………………………….28 2.5 Data Coregistration ………………………………………………………...29 2.6 Functional Connectivity ……………………………………………………30 2.7 Structural Connectivity …………………………………………………….30 Chatper 3 Results……….………………………………………..…………………33 3.1 Functional Connectivity within Default Mode Network …....…...…….…..33 3.2 Structural Connections in Default Mode Network ……………………….34 3.3 Structural Connectivity in Default Mode Network …………………..…….34 Chatper 4 Discussion……….………………………………………………………...36 Chatper 5 Conclusion ……….…….…………………………………………………43 References ………………………………………………………………….………..44 Figure 1, Pulse sequence of diffusion MRI ….……………………………………....50 Figure 2, Flow chart of DSI data processing. ………………………………………..51 Table 1, MR parameters of resting-state fMRI, DSI and T2-weighted imaging……..52 Figure 3, Flow chart of coregistration of fMRI and DSI imaging.…………………..53 Figure 4, Activation map of resting-state fMRI of subject 4.………………………...54 Figure 5, Functional connectivity of the DMN nodes………………………………..55 Figure 6, Tractography result of structural connection between Medial frontal lobe (MF) and posterior cingulate cortex / precuneus region (PCC)…………....56 Figure 7, Tractography result of structural connection between Medial frontal lobe (MF) and inferior parietal lobe (IP)……………………………………......57 Figure 8, Tractography result of structural connection between inferiot parietal lobe (IP) and posterior cingulate cortex/ precuneus region (PCC)……………...58 Figure 9, Tractography result of inter-hemisphere structural connection of DMN…..59 Figure 10, Structural core of DMN………………..…………………………………61 Figure 11, Tractography reconstruction result of spelenium of corpus callosum……62 Figure 12, Structural connectivity of the DMN nodes demonstrated by nCI.………..63 Figure 13. Structural connectivity of the DMN nodes demonstrated by relative nCI...................................................................................................................64 | |
dc.language.iso | en | |
dc.title | 使用擴散頻譜磁振造影重建人腦預設模式迴路之結構連結 | zh_TW |
dc.title | Connective Fiber Tracts in Default Mode Network Mapped by Diffusion Spectrum Imaging | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 曾文毅(Wen-Yih I. Tseng) | |
dc.contributor.oralexamcommittee | 鐘孝文(Hsiao-Wen Chung),郭文瑞(Wen-Jui Kuo) | |
dc.subject.keyword | 平靜狀態功能性磁振造影,擴散頻譜磁振造影,腦功能影像,磁振造影, | zh_TW |
dc.subject.keyword | resting-state fMRI,diffusion spectrum image,DSI,brain imaging technique,magnetic resonance image, | en |
dc.relation.page | 64 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 1.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。