請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43849
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李瑞庭 | |
dc.contributor.author | Rung-Tai Kao | en |
dc.contributor.author | 高榮泰 | zh_TW |
dc.date.accessioned | 2021-06-15T02:30:29Z | - |
dc.date.available | 2012-08-19 | |
dc.date.copyright | 2009-08-19 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-15 | |
dc.identifier.citation | [1] J. S. Abarbanell, B. J. Bushee, Fundamental analysis, future earnings, and stock prices, Journal of Accounting Research, Vol. 35, 1997, pp. 1-24.
[2] J. S. Abarbanell, B. J. Bushee, Abnormal returns to a fundamental analysis strategy, The Accounting Review, Vol. 73, 1998, pp. 19-45. [3] B. Back, J. Toivonenb, H. Vanharanta, A. Visa, Comparing numerical data and text information from annual reports using self-organizing maps, International Journal of Accounting Information Systems, Vol. 2, 2001, pp.249-269. [4] D. P. Brown, R. H. Jennings, On Technical Analysis, The Review of Financial Studies, Vol. 2, No. 4, 1989, pp. 527-551 [5] T. A. Carnes, Unexpected changes in quarterly financial-statement line items and their relationship to stock prices, Academy of Accounting and Financial Studies Journal, Vol. 10, No. 3, 2006. [6] M. C. Chan, C. C. Wong, W. F. Tse, B. Cheung, G. Tang, Artificial intelligence in portfolio management, Intelligent Data Engineering and Automated Learning, 2002, pp. 403-409. [7] C. C. Chang, C. J. Lin, LIBSVM: A library for support vector machines, 2001, Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/. [8] P. Chen, G. Zhang, How do accounting variables explain stock price movements? Theory and evidence, Journal of Accounting and Economics, Vol. 43, 2007, pp. 219-244. [9] C. Cortes, V. Vapnik, Support-vector networks, Machine Learning, Vol. 20, No. 3, 1995, pp. 273-297. [10] S. A. Dudani, The distance-weighted k-Nearest Neighbor Rule, IEEE Transactions on Systems, Man and Cybernetics, Vol. 6, No. 4, 1976, pp. 325-327. [11] S. Dumais, J. Platt, D. Heckerman, Inductive learning algorithms and representations for text categorization, Proceedings of the 7th International Conference on Information and Knowledge Management, 1998, pp. 148-155. [12] Edgar database, http://www.sec.gov/edgar.shtml. [13] R. D. Edwards, J. Magee, Technical Analysis of Stock Trends, Springfield, Massachusetts, 1966. [14] E. F. Fama, The behavior of stock market prices, Journal of Business, Vol. 38, No.1, 1964, pp. 34-106. [15] B. Frey, D. Dueck, Mixture modeling by affinity propagation, Advances in Neural Information Processing Systems, Vol. 18, pp. 379-386, 2005. [16] G. P. C. Fung, J. X. Yu, W. Lam, News sensitive stock trend prediction, Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2002, pp 481-493. [17] G. Gidófalvi, Using news articles to predict stock price movements, Technical Report, Department of Computer Science and Engineering, University of California, San Diego, 2001. [18] M. A. Hearst, Support vector machines, IEEE Intelligent Systems, Vol. 13, No.4, 1998, pp. 18-21. [19] T. Joachims, Text categorization with support vector machines: Learning with many relevant features, Proceedings of the 10th European Conference on Machine Learning, 1998, pp. 137-142. [20] A. Kloptchenko, T. Eklund, B. Back, J. Karlsson, H. Vanharanta, A. Visa, Combining data and text mining techniques for analyzing financial reports, Intelligent Systems in Accounting, Finance and Management, Vol. 12, Issue 1, 2004, pp. 29-41. [21] A. Kloptchenko, C. Magnusson, B. Back, A. Visa, H. Vanharanta, Mining textual contents of financial reports, The International Journal of Digital Accounting Research, Vol. 4, 2004. [22] T. Kohonen, The self-organizing map, Neurocomputing, Vol. 1-3, 1998, pp.1-6. [23] M. Lam, Neural network techniques for financial performance prediction: integrating fundamental and technical analysis, Decision Support Systems, vol. 37, 2004, pp. 567-581. [24] B. LeBaron, W. B. Arthur, R. Palmer, Time series properties of an artificial stock market, Journal of Economic Dynamics and Control, Vol. 23, No. 9-10, 1999, pp. 1487-1516. [25] C. Magnusson, A. Arppe, T. Eklund, B. Back, H. Vanharanta, A. Visa, The language of quarterly reports as an indicator of change in the company’s financial status, Information and Management, Vol. 42, 2005, pp. 561-574. [26] B. G. Malkiel, A Random Walk Down Wall Street, W. W. Norton & Company, New York, 1973. [27] M. A. Mittermayer, Forecasting intraday stock price trends with text mining techniques, Proceedings of the 37th Hawaii International Conference on System Sciences, Track 3, Vol. 3, 2004, pp. 30064.2. [28] J. C. Platt, Fast training of support vector machines using sequential minimal optimization, Advances in kernel methods: support vector learning, 1999, pp. 185-208. [29] M. F. Porter, An algorithm for suffix stripping, Program, Vol. 14, No. 3, 1980. pp. 130-137. [30] M. F. Porter, The English (Porter2) stemming algorithm, Available at: http://snowball.tartarus.org/algorithms/english/stemmer.html, 2002. [31] X. Y. Qiu, P. Srinivasan, N. Street, Exploring the forecasting potential of company annual reports, Proceedings of the American Society for Information Science and Technology, Vol. 43, No. 1, 2006, pp. 168. [32] J. Roman, A. Jameel, Backpropagation and recurrent neural networks in financial analysis of multiple stock market returns, Proceedings of the 29th Hawaii International Conference on System Sciences, Vol. 2, 1996, pp. 454-461. [33] R. P. Schumaker, H. Chen, Textual analysis of stock market prediction using financial news articles, Proceedings of 12th Americas Conference on Information Systems, Paper 185, 2006. [34] R. P. Schumaker, H. Chen, Evaluating a news-aware quantitative trader: The effects of momentum and contrarian stock selection strategies, Journal of the American Society for Information Science and Technology, Vol. 59, No. 2, 2008, pp 247-255. [35] G. Siolas, F. d'Alché-Buc, Support vector machines based on a semantic kernel for text categorization, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, 2000, pp. 205-209. [36] Standard & Poor's Compustat database, http://wrds.wharton.upenn.edu/connect/. [37] T. D. Wang, J. Ress, K. Kannan, The impact of information security disclosures on market reactions to security breaches, Technical report, Purdue University, 2008. [38] G. C. Williams, Collocational networks: Interlocking patterns of lexis in a corpus of plant biology research articles, International Journal of Corpus Linguistics, Vol. 3, 1998, pp. 151-171. [39] B. Wüthrich, V. Cho, S. Leung, D. Permunetilleke, K. Sankaran, J. Zhang, W. Lam, Daily stock market forecast from textual web data, Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, 1998, pp. 2720-2725. [40] Y. Yang, X. Liu, A re-examination of text categorization methods, Proceedings of the 22nd Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, 1999, pp. 42-49. [41] Y. Zhai, A. Hsu, S. K. Halgamuge, Combining news and technical indicators in daily stock price trends prediction, International Symposium on Neural Networks, Part III, LNCS 4493, 2007, pp. 1087-1096. [42] R. J. Van Eyden, The Application of Neural Networks in the Forecasting of Share Prices, Finance and Technology Publishing, Haymarket, VA, 1996. [43] Yahoo & Google Historical Quotes Downloader, http://www.yloader.com/. [44] Yahoo! Finance, http://finance.yahoo.com/. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43849 | - |
dc.description.abstract | 為了保護投資大眾以及維持投資市場的健全,證券交易法相關法令規定上市公司必須定期地揭露財務報表,這些財務報表不但可以幫助投資決策,還有助於股票市場的研究與分析。在本篇論文中,我們提出一個有效率的分群方法叫「HRK」,用來預測財務報表發布後的短期股價趨勢。首先,我們將每一篇財務報表轉換成一個特徵向量。我們提出的方法主要包括三個階段。第一階段,利用階層式聚合分群演算法將所有的特徵向量分成數個群集。第二階段,我們遞迴地利用K-means演算法將上一階段的每個群集再分成數個群集,直到每個群集中大部份的特徵向量都屬於同一個類別。然後,我們以質心來代表得到的每個群集,這些質心即為具代表性之特徵向量。第三階段,我們用這些具代表性之特徵向量來預測股價變動的趨勢。實驗結果顯示,不論是預測的準確率或平均獲利,我們所提出的方法皆優於支援向量機方法。 | zh_TW |
dc.description.abstract | With disclosure regulation, a large amount of financial reports is available for investment purposes and research analysis. In this thesis, we propose an effective clustering method, HRK (Hierarchical agglomerative and Recursive K-means clustering), to predict the short-term stock price movements after the release of financial reports, where each financial report is represented by a feature vector. The proposed method consists of three phases. First, we use the hierarchical agglomerative clustering (HAC) algorithm to divide the feature vectors into several clusters. Second, for each cluster, we recursively divide the feature vectors within the cluster into several clusters by the K-means algorithm until most feature vectors in each cluster have the same label. Then, we compute the centroid for each cluster. The centroids are called the representative feature vectors of the clusters. Finally, we use these representative feature vectors to predict the stock price movements. The experimental results show that the proposed method outperforms the SVM method in terms of accuracy and average profits. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:30:29Z (GMT). No. of bitstreams: 1 ntu-98-R96725023-1.pdf: 803901 bytes, checksum: 3a9e617565ae9cd46dbe178eadf06cc6 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | Table of Contents i
List of Figures ii List of Tables iii Chapter 1 Introduction 1 Chapter 2 Preliminaries and Problem Definitions 7 Chapter 3 The Proposed Method 10 3.1 Hierarchical Agglomerative Clustering Algorithm 10 3.2 K-means Algorithm 12 3.3 Stock Price Movements Prediction 14 Chapter 4 Performance Analysis 16 4.1 Dataset 16 4.2 Evaluation Metrics 17 4.3 Experimental Results 17 Chapter 5 Conclusions and Future Work 25 References 27 | |
dc.language.iso | en | |
dc.title | 使用具代表性之特徵預測股市趨勢 | zh_TW |
dc.title | Stock Market Prediction Using the Representative Features | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳彥良,劉敦仁 | |
dc.subject.keyword | 股價預測,財務報表,文件分群, | zh_TW |
dc.subject.keyword | stock price prediction,financial report,document clustering., | en |
dc.relation.page | 31 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-17 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 785.06 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。