Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43762
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖運炫(Yunn-Shiuan Liao)
dc.contributor.authorWei-Fan Chenen
dc.contributor.author陳威帆zh_TW
dc.date.accessioned2021-06-15T02:27:56Z-
dc.date.available2011-08-18
dc.date.copyright2009-08-18
dc.date.issued2009
dc.date.submitted2009-08-17
dc.identifier.citation1. M. J. Tan, L. H. Koh, K. A. Khor, F. Y. C. Boey, Y. Murakoshi and T. Sano, “Discontinuous reinforcements in extruded aluminium–lithium matrix composite,” Journal of Materials Processing Technology, Vol.37, 1993, pp. 391–403.
2. J.U. Ejiofor and R. G. Reddy, “Developments in the processing and properties of particulate Al-Si composites,” Journal of Material Science, Vol.49, 1997, pp.31–37.
3. M. K. Surappa and P. K. Rohatgi, “Preparation and properties of aluminium alloy ceramic particle composites,” Journal of Material Science, Vol.16, 1981, pp.983–993.
4. N. Tomac and K. Tonnessen, “Machinability of particulate aluminum matrix composites,” Annals of CIRP, Vol. 41, 1992, pp.55–58.
5. P. Chen, “High-performance machining of SiC whisker-reinforced aluminum composite by self-propelled rotary tools,” Annals of CIRP, Vol.41, 1992, pp.59–62.
6. W. Konig, L. Cronjager, G. Spur, H. K. Tonshoff, M. Vigneau and W. J. Zdeblick, “Machining of new materials,” Annals of CIRP, Vol.39, 1990, pp.673–681.
7. A. Gadalla, M. Elmasry and P. Kongkachuichay, “High temperature reactions within SiC-Al2O3 composites,” Journal of Materials Research, Vol.7, 1992.
8. S. Yossifon and C. Rubenstein, “The grinding of workpieces exhibiting high adhesion,” Journal of Engineering for Industry, Vol.103, 1981, pp.144–155.
9. A. P. Nagaraj and A. K. Chattopadhyay, “On some aspects of wheel loading,” Wear, Vol.135, 1989, pp.41–52.
10. Z. W. Zhong, “Grinding of aluminium-based metal matrix composites reinforced with Al2O3 or SiC particles,” International Journal of Advanced Manufacturing Technology, Vol.21, 2003, pp.79–83.
11. A. D. Ilio, A. Paoletti, V. Tagliaferri and F. Veniali, “An experimental study on grinding of silicon carbide reinforced aluminium alloys,” International Journal of Machine Tools and Manufacture, Vol.36, 1996, pp.673-685.
12. S. Paul and A. B. Chattopadhyay, “Determination and control of grinding zone temperature under cryogenic cooling,” International Journal of Machine Tools and Manufacture, Vol.36, 1996, pp.491–501.
13. S. Paul and A. B. Chattopadhyay, “The effect of cryogenic cooling on grinding forces,” International Journal of Machine Tools and Manufacture, Vol.36, 1996, pp.63–72.
14. 羅偉倫,Inconel-718與其他材料磨削時使用不同切削液的現象分析,國立台灣大學機械工程學研究所碩士論文,民國八十八年六月
15. I. Inasaki, H. K. Tonshoff and T. D. Howes, “Abrasive machining in future,” Annals of CIRP, Vol.42, 1993, pp.723–732.
16. T. Nguyen and L. C. Zhang, “An Assessment of Applicability of Cold Air and Oil Mist in Surface Grinding,” Journal of Materials Processing Technology, Vol.140, 2003, pp.224–230.
17. L. R. da Silva, E. C. Bianchi, R. Y. Fusse, R. E. Catai, T. V. Franca and P. R. Aguiar, “Analysis of surface integrity for minimum quantity lubricant-MQL in grinding,” International Journal of Machine Tools and Manufacture, Vol.47, 2007, pp.412–418.
18. S. Inoue and T. Aoyama, “Application of Air Cooling Technology and Minimum Quantity Lubrication to Relief Grinding of Cutting Tools,” Key Engineering Materials, Vol.257, 2004, pp.345–350.
19. S. Inoue and T. Aoyama, “Performance of Metal Cutting on Endmills Manufactured by Cooling,” JSME International Journal, Vol.48, 2005, pp.381–386.
20. A. Pramanik, L.C. Zhang and J. A. Arsecularatne, “An FEM investigation into the behavior of metal matrix composites: Tool–particle interaction during orthogonal cutting,” International Journal of Machine Tools and Manufacture, Vol.47, 2007, pp.1497–1506.
21. E. Kılıckap, O. Cakır, M. Aksoy and A. Inan, “Study of tool wear and surface roughness in machining of homogenised SiC-p reinforced aluminium metal matrix composite,” Journal of Materials Processing Technology, Vol.164–165, 2005, pp.862–867.
22. I. Ciftci, M. Turker and U. Seker,“Evaluation of tool wear when machining SiCp-reinforced Al-2014 alloy matrix composites”, Materials and Design, Vol.25, 2004, pp.251–255.
23. Y. Sahin and G. Sur, “The effect of Al2O3, TiN and Ti (C,N) based CVD coatings on tool wear in machining metal matrix composites,” Surface and Coatings Technology, Vol. 179, 2004, pp.349–355.
24. Y. Ozcatalbas, “Investigation of the machinability behaviour of Al4C3 reinforced Al-based composite produced by mechanical alloying technique,” Composites Science and Technology, Vol.63, 2003, pp. 53–61.
25. 黃清忠,氧化鋁與氮化硼砂輪磨削工件表面整合之比較,國立台灣大學機械工程學研究所碩士論文,民國七十九年
26. W. Lortz, “A model of the cutting mechinism in grinding,” Wear, Vol.53, 1979, pp.115–128.
27. G. Bellows, “Low stress grinding for quality production”, Machinability Data Center, 1978.
28. R. W. Mceachron and E. Ratterman, “Diamond processing of structural ceramics,” Ceramics Engineering and Science Porceedings, Vol.7, 1986, pp. 1063–1069.
29. G. Werner, “Influence of work material on grinding forces,” Annals of CIRP, Vol.27, 1978, pp.243–248.
30. L. Li and J. Fu, “A sturdy of grinding force mathematical model,” Annals of CIRP, Vol. 29, 1980, pp.245–249.
31. J. W. Sutherland, “An investigation into the effect of tool and cut geometry on cutting force system precision models,” NAMRC, 1984, pp.264.
32. H. Tsuwa, “An investigation of Grinding Wheel Cuttin Edges,” Journal of Engineering for Industry, 1964, pp. 371–381.
33. 王廷飛,表面組織解說,前程出版社,民國74年
34. 張長宏,奈米切削液對磨削鈦合金的影響,國立台灣大學機械工程學研究所碩士論文,民國九十六年
35. T. Howes, “Assessment of the cooling and lubricating properties of grinding fluids,” Annals of CIRP, Vol.39, 1990, pp.313–316.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43762-
dc.description.abstract由於金屬鋁基複合材料的使用範圍廣泛,精密加工的需求也日益增加,但對金屬鋁基複合材料的磨削加工特性了解仍然未作深入的探討。金屬鋁基複合材料是由軟的鋁基底包含硬的陶瓷顆粒,其材料特性不單純是延性材料,既黏又硬,屬於複合式的材料,本研究嘗試並尋求有效且符合經濟效益磨削金屬鋁基複合材料的方法。本文進行乾磨削、一般切削液、MQL和使用液態氮作為切削液磨削金屬鋁基複合材料的研究,並比較在不同的切削深度和砂輪速度之下,各種切削液供給方式對砂輪填塞、黏屑機制、工件表面品質、磨削力和表面粗糙度的差異性並分析。實驗結果發現使用MQL時,由於高壓空氣的穿透力可以發揮出潤滑的效果,使得切削力下降,磨粒能保持住刃邊,砂輪磨耗量相對乾磨削及濕磨削小。噴液態氮最可以有效的降低砂輪的磨耗及填塞,並提昇材料的磨削性,可以獲得到比使用MQL更好的工件表面品質和較佳的表面粗度。而在使用液態氮時,可以增加磨削加工時砂輪的修整週期,提高加工的效率,並得到較為平整的工件,獲得更好的加工品質。zh_TW
dc.description.abstractDue to the development and application of aluminium-based metal matrix composites extensively, precision machining demand also day by day increases, but reports on grinding of aluminium-based MMCs are still scarce. Aluminium-based MMCs are soft aluminum base including the hard ceramic reinforcements. Its materials behavior not only is ductile, but both sticky and hard. This research attempts and seeks to the economic grinding aluminium-based MMCs method. The contents of this article chiefly explain the effects on grinding aluminium-based MMCs when using liquid nitrogen, the general water-based fluid, the minimum quantity lubrication (MQL) and no cutting fluid.Under different cutting depth and grinding speeds, compare and analyze the differences when using liquid nitrogen, the general water-based fluid and no cutting fluid through the usage of wheel loading and wear, grinding force, surface of workpiece and roughness, also to analyze the diversification. The conclusion of this experiment is that using MQL can lubricate due to the more efficient penetration of the fluid into the cutting region, cause the cutting force to drop, be attributed mainly to the retention of the sharpness of the grits. The grinding wheel wear are relative to dry grinding and the wet grinding smaller. Using liquid nitrogen is the most effective to reduce wheel wear and loading, and is most prone to achieve better surface of workpiece and roughness than MQL grinding. When using liquid nitrogen, we acquire a flatter workpiece in order that we could economize the finished cost and to enhance efficiency.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:27:56Z (GMT). No. of bitstreams: 1
ntu-98-R96522716-1.pdf: 6434582 bytes, checksum: ed44cb291ffaec3c8ca76cd31daf88d8 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘 要I
AbstractII
目 錄III
圖目錄V
表目錄VII
符 號 對 照 表 VIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 研究目的 6
1.4 本文內容 7
第二章 相關理論 8
2.1 磨削原理 8
2.2 磨耗理論 10
2.2.1 磨損磨耗(attritious wear) 10
2.2.2 顆粒的破裂(grain fracture) 10
2.2.3 膠合破裂(bond fracture) 11
2.3 磨削力中切削力的分析 12
2.4 表面粗糙度的表示方法 17
2.4.1 表面組織之定義 17
2.4.2 表面粗糙度的表示法 19
第三章 實驗設備及方法 23
3.1 實驗設備 23
3.2實驗方法 31
3.2.1 本文主要加工條件 31
第四章 實驗結果與討論 34
4.1磨削後砂輪填塞、磨耗的比較 34
4.1.1 改變切削液對黏屑型態之比較 34
4.1.2 綜合討論 44
4.2 切削液對磨削力的影響 45
4.2.1 切削液對磨削力的影響 45
4.2.2 綜合討論 47
4.3 切削液對工件表面的影響 48
4.3.1 切削液對加工面的影響 48
4.3.2 切削液對表面粗糙度的影響 55
第五章 結論和未來展望 60
5.1 結論 60
5.2 未來展望 61
參考文獻 62
dc.language.isozh-TW
dc.subject液態氮zh_TW
dc.subject金屬鋁基複合材料zh_TW
dc.subjectMQLzh_TW
dc.subjectaluminium-based metal matrix compositesen
dc.subjectMQLen
dc.subjectliquid nitrogenen
dc.title金屬基複合材料之磨削性研究zh_TW
dc.titleGrinding of Metal Matrix Compositesen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳順同,林憲茂
dc.subject.keyword金屬鋁基複合材料,MQL,液態氮,zh_TW
dc.subject.keywordaluminium-based metal matrix composites,MQL,liquid nitrogen,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2009-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
6.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved