請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43755完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林守德 | |
| dc.contributor.author | Chien-Lin Tseng | en |
| dc.contributor.author | 曾建霖 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:27:44Z | - |
| dc.date.available | 2010-08-20 | |
| dc.date.copyright | 2009-08-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-17 | |
| dc.identifier.citation | [1] S. Milgram. The small world problem. Psychology Today, 1:60-67, 1967.
[2] S. Goel, R. Muhamad, D. J. Watts. Social Search in “Small-World” Experiments. In 18th International World Wide Web Conference (WWW), 2009. [3] J. Leskovec and E. Horvitz. Planetary-scale views on a large instant-messaging network. In 17th International World Wide Web Conference (WWW), 2008. [4] A. Java, X. Song, and T. Finin, B. Tseng, Why We Twitter: Understanding Microblogging Usage and Communities. In 9th WEBKDD and 1st SNA-KDD Workshop, 2007. [5] J. Zhu, Z. Nie, X. Liu, B. Zhang, and J. R. Wen. StatSnowball: a Statistical Approach to Extracting Entity Relationships. In 18th International World Wide Web Conference (WWW), 2009. [6] J. Kleinberg. The small-world phenomenon: An algorithmic perspective. In 32nd ACM Symposium on Theory of Computing, 1999. [7] J. Kleinberg. Navigation in a small world. Nature, 406, 2000. [8] J. Kleinberg. Complex Networks and Decentralized Search Algorithms. Proceedings of the International Congress of Mathematicians (ICM), 2006. [9] Rudi L. Cilibrasi and Paul M. B. Vitanyi. The Google Similarity Distance, IEEE Transactions on Knowledge and Data Engineering, v.19 n.3, p.370-383, March 2007. [10] P. S. Dodds, R. Muhamad, and D. J. Watts. An experimental study of search in global social networks. Science, 301:827-829, 2003. [11] J. Kleinberg. Small-World Phenomena and the Dynamics of Information. Advances in Neural Information Processing Systems (NIPS) 14, 2001. [12] J. Guiot. A modi_cation of milgram's small world method. European Journal of Social Psychology, 6:503-507, 1976. [13] C. Korte and S. Milgram. Acquaintance networks between racial groups: Application of the small world method. Journal of Personality and Social Psychology, 15:101-108, 1970. [14] N. Lin, P. Dayton, and P. Greenwald. The urban communication network and social strati_cation: A small world experiment'. In B. D. Ruben, editor, Communication Yearbook, pages 107-119. Transaction Books, 1978. [15] C. Lundberg. Patterns of acquaintanceship in society and complex organization: A comparative study of the small world problem. Paci_c Sociological Review, 18:206-222, 1975. [16] R. Shotland. University Communication Networks: The Small World Method. Wiley, 1976. [17] J. Kleinberg. Complex Networks and Decentralized Search Algorithms. Proceedings of the International Congress of Mathematicians (ICM), 2006. [18] F. Menczer. Growing and Navigating the Small-World Web by Local Content. Proc. Natl. Acad. Sci. USA. vol.99 no.22 14014–14019, 2002. [19] D. J. Watts, P. S. Dodds and M. E. J. Newman. Identity and Search in Social Networks. Science. 296 1302–1305, 2002. [20] L. A. Adamic and E. Adar. How to search a social network. Social Networks. 27 3 187–203, 2005. [21] L. A. Adamic, R. M. Lukose, A. R. Puniyani and B. A. Huberman. Search in Power-Law Networks. Phys. Rev. E 64, 46135–46143, 2001 [22] A. Banerjee and Sugato Basu. A Social Query Model for Decentralized Search. SNA-KDD 2008 [23] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang and Z. Su. ArnetMiner: Extraction and Mining of Academic Social Networks. In 14th Knowledge Discovery and Data Mining Conference (KDD), 2008 [24] Y. Matsuo, J. Mori and M. Hamasaki. POLYPHONET: An Advanced Social Network Extraction System from the Web. In 15th International World Wide Web Conference (WWW), 2006. [25] Y. Jin, Y. Matsuo, and M. Ishizuka: Extracting Social Networks among Various Entities on the Web, Proc. Fourth European Semantic Web Conference (ESWC), 2007. [26] D. Bollegala, Y. Matsuo and M. Ishizuka. Measuring Semantic Similarity between Words Using Web Search Engines. In 16th International World Wide Web Conference (WWW), 2007. [27] H. Ohshima and K. Tanaka. Real time extraction of related terms by bi-directional lexico-syntactic patterns from the web. Proc. 3rd International Conference on Ubiquitous Information Management and Communication (ICUIMC), 2009 [28] M. Makrehchi and M. S. Kamel. Learning Social Networks from Web Documents Using Support Vector Classifiers. In Web Intelligence (WI), 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43755 | - |
| dc.description.abstract | 六度分離理論是一種小世界現象:世界上任何兩個不認識的人最多透過六層認識的關係即可以將兩人串連起來。在此篇論文中,我們提出一種非監督式的六度離搜尋系統:「攀關係」,此系統將全球資訊網視為大型的社群網路資料庫,藉由搜尋引擎找出任何兩人之間以認識為基礎的關係鏈。相較於其他具有類似功能的系統,「攀關係」具有以下四種優點,一、有較高的機會可以成功找出兩人之間的關係鏈。二、關係鏈的長度不會太長。三、不需要任何事先建立好的社群網路。四、所尋找出來的關係鏈較能反映出真實世界當下的人際關係。「攀關係」主要是由「擴展」以及「猜測」兩個元件所組成,並使用雙向搜尋配合A*的搜尋策略來執行整個關係鏈搜尋的過程。我們更定義了一種名為「標準化關係距離」的關係強度評估標準,應用此評估標準在「擴展」和「猜測」兩個主要元件上,能找出具有強烈關係的人並加速搜尋的速度。最後實驗的結果顯示,「攀關係」的合理度3.066遠超過基準線1.630以及「人立方-六度」2.204。 | zh_TW |
| dc.description.abstract | The small-world phenomenon —“Six Degrees of Separation”— argues that everyone in the world can be connected to any other person through a chain of acquaintances that has no more than five intermediaries. In this thesis we propose an unsupervised system, the “Search-based Six-Degree Finder”, which utilizes World-Wide-Web as a partially seen large social knowledge database, and navigates on it using a search engine to discover the acquaintance-based chain between two given people. Comparing with some other systems or experiments of the similar goal, ours has four advantages: First, it allows us to find the path between people with higher successful rate. Second, it tries to find shorter paths between people. Third, it does not require any existing social network. The final advantage is that the relationships in the path have better chance to reflect the real-world relationships. Our SDF system consists of two main components, “Expand” and “Guess”, to perform the bidirectional search with A* search strategy. We further define a novel relationship strength measure, called “Normalized Relationship Distance” (NRD) to serve as the main function for Expand and Guess components. The experiments and human study reveal that discovered chains are believed to be reasonable with average grade 3.066 (from 0 to 5), which outperforms not only the baseline (1.63) but also the state-of-the-art six-degree finder “Renlifang” (2.204). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:27:44Z (GMT). No. of bitstreams: 1 ntu-98-R96922063-1.pdf: 3377293 bytes, checksum: a4e022bce5b3791ceb0cefecbcb17075 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Acknowledgements I
Abstract II 摘要 III Table of content IV List of Figures VII List of tables IX Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Problem Definition and Proposed Solution 5 1.3 Thesis Organization 6 Chapter 2 Related Work 7 2.1 Small-World Phenomenon 9 2.2 Relationship of Entities on Web 11 Chapter 3 Methodology 14 3.1 Framework 14 3.2 Search Strategies in Bidirectional Search 19 3.2.1 Breadth-First Strategy 19 3.2.2 Greedy Best-First Strategy 20 3.2.3 A* Strategy 21 3.3 Expand and Guess in SDF system 23 3.3.1 Expand 23 3.3.2 Guess 25 3.4 Measuring the Relationship Strength Distance 28 3.4.1 Relationship Strength Distance (RSD) 29 3.4.2 Google Similarity Distance (NGD) 31 3.4.3 Normalized Relationship Distance (NRD) 33 Chapter 4 Experiment 35 4.1 Query Collection 35 4.2 Example Results 36 4.3 User Study Design 37 4.4 Experiment Results and Discussion 39 Chapter 5 Conclusion 42 5.1 Summary of Contributions 42 5.2 Future Work 43 Bibliography 44 | |
| dc.language.iso | en | |
| dc.subject | 六度分離 | zh_TW |
| dc.subject | 網路搜尋 | zh_TW |
| dc.subject | 社群網路 | zh_TW |
| dc.subject | web search | en |
| dc.subject | social network | en |
| dc.subject | six degrees of separation | en |
| dc.title | 利用網路搜尋技術尋找網頁上兩人之間六度分離的關係連結 | zh_TW |
| dc.title | Exploiting Search Techniques to Discover Six Degrees of Separation between People from Web | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳信希,許永真,鄭卜壬 | |
| dc.subject.keyword | 社群網路,六度分離,網路搜尋, | zh_TW |
| dc.subject.keyword | social network,six degrees of separation,web search, | en |
| dc.relation.page | 46 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 3.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
