請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43753完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬(Chii-Wann Lin) | |
| dc.contributor.author | Chia-Hsin Wang | en |
| dc.contributor.author | 王佳欣 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:27:41Z | - |
| dc.date.available | 2021-12-31 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-17 | |
| dc.identifier.citation | 1 R. Swaminathan, C. P. H., and A. S. Verkman. Photobleaching Recovery and Anisotropy Decay of Green Fluorescent Protein GFP-S65T in Solution and Cells: Cytoplasmic Viscosity Probed by Green Fluorescent Protein Translational and Rotational Diffusion. Biophysical Journal 72, 1900-1907 (1997).
2 Y. Yoon, K. Pitts & M. McNiven. Studying cytoskeletal dynamics in living cells using green fluorescent protein. Molecular Biotechnology 21, 241-250, doi:10.1385/mb:21:3:241 (2002). 3 P. Schwille, E. H. Fluorescence Correlation Spectroscopy An Introduction to its Concepts and Applications. Spectroscopy 94, 1-33 (2009). 4 王柏凱. (2007). 5 M. B.Elowitz, M. G. S., P.-E. Wolf, J. Stock, S. Leibler, . Photoactivation turns green fluorescent protein red. Current Biology 7, 809-812, doi:10.1016/s0960-9822(06)00342-3 (1997). 6 N. M.Wikonkal et al. Inactivating E2f1 reverts apoptosis resistance and cancer sensitivity in Trp53-deficient mice. Nat Cell Biol 5, 655-660 (2003). 7 J. Widengren, B. Terry & R. Rigler. Protonation kinetics of GFP and FITC investigated by FCS -- aspects of the use of fluorescent indicators for measuring pH. Chemical Physics 249, 259-271, doi:10.1016/s0301-0104(99)00256-6 (1999). 8 Lin, C. T. Application of Two-Photon Excitation Microscopy on Biomedicine, (2006). 9 R. Rigler, Ü Mets, J. Widengren & P. Kask. Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. European Biophysics Journal 22, 169-175, doi:10.1007/bf00185777 (1993). 10 D. Grünwald, M. C. Cardoso, H. Leonhardt & V. Buschmann. Diffusion and Binding Properties Investigated by Fluorescence Correlation Spectroscopy (FCS). Current Pharmaceutical Biotechnology 6, 381-386, doi:10.2174/138920105774370616 (2005). 11 C. Boutin, R. J., J. Plain, P. Royer, . Surface Modified Single Molecules Free-Diffusion Evidenced by Fluorescence Correlation Spectroscopy. Journal of Fluorescence 18, 1115-1122, doi:10.1007/s10895-008-0361-y (2008). 12 H. Elke, P. S. Fluorescence correlation spectroscopy: Novel variations of an established technique. Annu. Rev. Biophys. Biomolec. Struct. 36, 151-169, doi:10.1146/annurev.biophys.36.040306.132612 (2007). 13 J. Mutze, T. O., and P. Schwille. Fluorescence correlation spectroscopy in vivo. Laser & Photonics Reviews 5, 52-67 (2011). 14 D. Magde, E. L. Elson & W. W.Webb. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13, 29-61, doi:10.1002/bip.1974.360130103 (1974). 15 O. Krichevsky, G. B. Fluorescence correlation spectroscopy: the technique and its applications Reports on Progress in Physics 65, 251-297 (2002). 16 P. Schwille, E. H. Fluorescence Correlation Spectroscopy An Introduction to its Concepts and Applications. (2006). 17 K. M. Berland, P. T. S., E. Gratton, . Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophysical Journal 68, 694-701, doi:10.1016/s0006-3495(95)80230-4 (1995). 18 MMB's Diffusion DataBase, <http://diffusion.wikidot.com/values:fluorescein#toc2> ( 19 R. Y. Tsien. The green fluorescent protein. Annu. Rev. Biochem. 67, 509-544, doi:10.1146/annurev.biochem.67.1.509 (1998). 20 Chalfie, M. GFP: Lighting up life. PNAS 106, 10073–10080 (2009). 21 M. Chalfie, Y. T., G. Euskirchen, W. W.Ward, D. C. Prasher, . Green Fluorescent Protein as a Marker for Gene Expression. Science 263, 802-805 (1994). 22 H. Morise, O. Shimomura, F. H. Johnson & J. Winant. Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry 13, 2656-2662, doi:10.1021/bi00709a028 (1974). 23 A. G. Cubitt, R. H., S. R. Adams, A. E. Goyd, L. A. Gross and R. Y. Tsien. Understanding, Improving, and Using Green Fluorescence Proteins. Trends in Biochemical Sciences 20, 448-455 (1995). 24 Clontech. pEGFP-C1 vectors. (2002). 25 M. C. Konopka, I. A.Shkel, S. Cayley, M. T. Record & J. C. Weisshaar. Crowding and Confinement Effects on Protein Diffusion In Vivo. J. Bacteriol. 188, 6115-6123, doi:10.1128/jb.01982-05 (2006). 26 D. E.Koppel, D. Axelrod, J. Schlessinger, E. L. Elson & W. W. Webb. Dynamics of fluorescence marker concentration as a probe of mobility. Biophysical Journal 16, 1315-1329, doi:10.1016/s0006-3495(76)85776-1 (1976). 27 A. Partikian, B. Ölveczky, R. Swaminathan, Y. Li & A. S. Verkman. Rapid Diffusion of Green Fluorescent Protein in the Mitochondrial Matrix. The Journal of Cell Biology 140, 821-829 (1998). 28 Invitrogen. Lipofectamine™ 2000 manul. (2006). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43753 | - |
| dc.description.abstract | 本論文研究為利用雙光子螢光相干顯微光譜(Two-photon-based fluorescence correlation spectroscopy )對綠螢光蛋白於磷酸鹽緩衝溶液、細胞質內綠營光蛋白濃度的量測,而細胞內綠營光蛋白表現量在轉染後6-27小時內會隨著時間增加而增加所以需量測出最適合的量測時間還有我們的FCS系統可量測到的最高很對低濃度。本研究的目的是為了建立一個可長時間、低生物傷害的細胞研究平台,以利於研究細胞骨架以及胞內物質運輸等等用途,可進一步了解有關細胞移動和癌細胞轉移等等重要特性。一般對於細胞內蛋白的運輸,例如細胞骨架或細胞膜流動速率等等使用的方式是螢光漂白後復原(Fluorescence Recovery After Photobleaching, FRAP),使用的是平均能量較高的光子造成螢光物質漂白再計算由他處螢光物質補充回來的時間來推算出細胞膜等物質的擴散速率,由於漂白後的螢光物是無法再表現螢光且用平均能量較高的雷射光長時間照射細胞會有細胞傷害的風險,例如突變或死亡或是因為蛋白質變性改變細胞的訊息傳遞等等。而且,雙光子具有較深的穿透深度更適合用於胞內的研究,所以選用雙光子激發的光源是讓細胞更接近原本的環境且又可以得到細胞訊息的方式。螢光相干顯微光譜則是跟螢光漂白後復原一樣計算帶有螢光物標誌物質的擴散係數,但不同的是此方法為一個空間內計算螢光分子進出的時間,不需要先將螢光物質漂白,可以不受制於只能是固定態的物質,例如細胞膜,才能夠做測量,細胞骨架為3D的結構在胞內,不似螢光漂白後復原或是電子顯微鏡需佐以影像。綠螢光蛋白(Green Fluorescence Protein, GFP) 可以形成融合蛋白(fused protein) 當作標的蛋白的標示且不易引起其他免疫反應或造成細胞死亡的指示物。本實驗目的是為了未來用綠螢光蛋白於細胞內研究而所作的基本參數量測。由於螢光相干光譜有其濃度限制,在數個奈米莫耳濃度到數個微米莫耳濃度會是最佳產生相干濃度。於是在轉染後細胞表現的綠螢光蛋白濃度變會影響螢光相干量測結果,最佳濃度量測的時間為轉染後6到30的小時內。這也包含細胞存活和背景雜訊干擾的考量而得到最是當的量測時間。少於6小時綠螢光蛋白表現量不夠且細胞處在不穩定的狀態,而大於30小時則是綠螢光蛋白數量過多且因為細胞死亡而吐出的綠螢光蛋白增加背景訊號。 | zh_TW |
| dc.description.abstract | In this thesis, we use the two-photon based fluorescence correlation spectroscopy system to measure the dynamic parameter of green fluorescence protein in PBS, and in cytosol. The concentration of GFP was increased with time during the period of the time, 6-27 hours after transfection. According the correlation we should know our system limitation of the concentration GFP. Our purpose is to set up a platform which is low bio-damage and for long-term observation for the study of the cell biology such as cytoskeleton and transportation in cell which are related to the metastasis of cancer cell or cell movement. In general, the studies of cytotskeleton or membrane transfusion rate are use Fluorescence recovery after photobleaching (FRAP) as a tool to study. The laser of FRAP was one photon excitation. Compare to the one photon excitation two photon excitation had less photobleaching, less cell damage and longer penetration depth. Not only for the immobile phase such as membrane, but also the protein in cytosol can be measured the parameter in our system – Two photon excitation fluorescence correlation spectroscopy (TPE-FCS). As for these reasons that two photon excitation was the suitable tool to develop a platform for long period of time in observation of cell biology. As a given excitation volume, the diffusion coefficient of molecules due to the Brownian motion into or out of the excitation volume is determined. In our system, the limit concentration of measurement is between sub-nanomolar to sub-micromolar. This is associated to the transfection. After tansfection, the HEK 293 cell started express the green fluorescence protein. However, less than 6 hour after transfection, the cells were at an unstable situation and there are less GFP in the cell. On the other hands, more than 30 hours that too much GFP were expressed in cell even secrete out to the medium. Thus became more background noise to the FCS measurement. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:27:41Z (GMT). No. of bitstreams: 1 ntu-100-R98548048-1.pdf: 1434660 bytes, checksum: 16d4bbbb3169e044b3abea0814fdc9bd (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 1 中文摘要 2 ABSTRACT 3 CONTENTS 4 LIST OF FIGURES 6 Chapter 1 Introduction 8 1.1 Motivation 8 1.2 Basic principle of Optical Microscopy 8 1.3 Review of Two-Photon Microscopy 9 1.4 Review of Fluorescence Correlation Spectroscopy 10 Chapter 2 Principles of Two-Photon Excitation Fluorescence Correlation Spectroscopy 12 2.1 Optical Properties of TPE 12 2.2 TPE-FCS Setup 14 2.2.1 Light source 14 2.2.2 Scanning System and Beam Expander 15 2.2.3 Detecting System 15 2.3 Fluorescence correlation spectroscopy (FCS) 16 2.4 Correlation Analysis 18 2.4.1 Calibration 18 2.4.2 Free-Green Fluorescence Protein in PBS 19 Chapter 3 Green fluorescence protein in HEK 293 20 3.1 Materials and Methods 20 3.1.1 Plasmid Amplified 20 3.1.2 Cell Culture and Transfection 21 3.1.3 Green fluorescence protein 21 3.2 Result and discussion 22 3.2.1 Plasmid amplified 22 3.2.2 Calibraiton 22 3.2.3 Observe GFP in PBS 23 3.2.4 The two photon image of HEK 293 cell 24 3.2.5 The best measuring time window 28 Chapter 4 Conclusion and Prospective 31 REFERENCE 32 | |
| dc.language.iso | en | |
| dc.subject | 綠螢光蛋白 | zh_TW |
| dc.subject | 人類腎臟胚胎上皮細胞293 | zh_TW |
| dc.subject | 螢光相干顯微術 | zh_TW |
| dc.subject | Human Embryonic Kidney 293 | en |
| dc.subject | Fluorescence correlation spectroscopy | en |
| dc.subject | green fluorescence protein | en |
| dc.title | 雙光子激發螢光相干顯微術於人類胚胎腎臟293細胞質中綠螢光蛋白之研究 | zh_TW |
| dc.title | Two-Photon Excitation Fluorescence Correlation Spectroscopy for Green Fluorescence Protein in Human Embryonic Kidney 293 Cell Cytosol | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 管永恕,劉子銘,廖世舉 | |
| dc.subject.keyword | 螢光相干顯微術,綠螢光蛋白,人類腎臟胚胎上皮細胞293, | zh_TW |
| dc.subject.keyword | Fluorescence correlation spectroscopy,green fluorescence protein,Human Embryonic Kidney 293, | en |
| dc.relation.page | 42 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
