請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43749完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 逄愛君 | |
| dc.contributor.author | Hsueh-Wen Tseng | en |
| dc.contributor.author | 曾學文 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:27:35Z | - |
| dc.date.available | 2009-08-19 | |
| dc.date.copyright | 2009-08-19 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-17 | |
| dc.identifier.citation | [1] Data Sheet for CC2420 2.4GHz IEEE 802.15.4/Zigbee RF Transceiver. Technical
report. [2] IEEE 802.11Working Group Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) speci‾cations. ANSI/IEEE Std 802.11 Step. 1999. [3] IEEE 802.15.4 Working Group Part 15.4: Wireless Medium Access Control Layer (MAC) and Physical Layer (PHY) Speci‾cations for Low Rate Wireless Personal Area Networks (LR-WPANs). ANSI/IEEE Std. 802.15.4 Oct. 2003. [4] IEEE 802.16 Working Group Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems. ANSI/IEEE Std 802.16 Oct. 2005. [5] IEEE 802.16 Working Group Part 16: Air Interface for Fixed Broadband Wireless Access Systems. ANSI/IEEE Std 802.16 Oct. 2004. [6] Template for IEEE 802.15.4 LR-WPAN. Technical report, Kinny, P. et al. [7] Spread Spectrum Processor with Medium Access Control. Technical report, Texas Instruments, Dec 2001. [8] 3GPP. Requirements for evolved utra (e-utra) and evolved utran (e-utran). In 3GPP TR 25.913 - v7.3.0. [9] G. Bianchi. Performance Analysis of the IEEE 802.11 Distributed Coordination Function. IEEE J. Select Areas Comm., 18, Mar. 2000. [10] C. Chien, M. B. Srivastava, R. Jain, P. Lettieri, V. Aggarwal, and R. Sternowski. Adaptive Radio for Multimedia Wireless Links. IEEE Journal Select Areas Commu- nications, 17(5):793{813, May 1999. [11] S. Choi. IEEE 802.11e MAC-level FEC Performance Evaluation and Enhancement. In IEEE Globecom 2002, pages 773{777, Nov. 2002. [12] S. Choi, Y. Choi, and I. Le. IEEE 802.11 MAC-Level FEC Scheme with Retransmis- sion Combining. IEEE Transactions on Wireless Communications, 5:203{211, Jan. 2006. [13] J. Deng, P. Varshney, and Z. Haas. A New Backo® Algorithm for the IEEE 802.11 Distributed Coordination Function. In CNDS 2004, January 2004. [14] H. Ekstrom, A. Furuskar, J. Karlsson, S. Parkvall, M. Meyer, J. Torsner, and M. Wahlqvist. [15] F. H. P. Fitzek, D. Angelini, G. Mazzini, and M. Zorzi. Design and Performance of an Enhanced IEEE 802.11 MAC Protocol for Multihop Coverage Extension. IEEE Wireless Communications, 10:30{39, Dec. 2003. [16] J. J. Garcia-Luna-Aceves and T. Asimakis. Receiver-initiated Collision Avoidance in Wireless Networks. ACM/IEEE Wireless Networks, 8(2/3):249{263, Mar. 2002. [17] S. Gollakota and D. Katabi. Zigzag decoding: combating hidden terminals in wireless networks. In ACM SIGCOMM 2008, pages 159{170, 2008. [18] N. Golmie, D. Cypher, and O. Rebala. Performance Analysis of Low Rate Wireless Technologies for Medical Applications. Computer Communications, 28:1266{1275, June 2005. [19] Z. J. Haas and J. Deng. Dual busy tone multiple access (DBTMA)- a multiple access control scheme for ad hoc networks. IEEE Transactions on Communications, 50(6):975{985, June 2002. [20] T.-S. Ho and K.-C. Chen. Performance Analysis of IEEE 802.11 CSMA/CA Medium Access control Protocol. In IEEE PIMRC'96, pages 407{411, Oct. 1996. [21] L.-J. Hwang, S.-T. Sheu, Y.-Y. Shih, and Y.-C. Cheng. Grouping Strategy for Solving Hidden-Node Problem in IEEE 802.15.4 LR-WPANs. In IEEE WICON 2005, pages 26{32, July 2005. [22] E. S. Jung and N. H. Vaidya. A power control MAC protocol for ad hoc networks. In ACM MOBICOM 2002, pages 36{47, 2002. [23] G. E. Keiser. Local Area Networks. McGraw-Hill, 1989. [24] C. R. Krishna, S. Chakrabarti, and D. Datta. A modi‾ed backo® algorithm for ieee 802.11 dcf-based mac protocol in a mobile ad hoc network. In IEEE TENCON 2004, pages 664{667, Nov. 2004. [25] S. Kuppa and R. Prakash. Service di®erentiation mechanisms for ieee 802.11-based wireless networks. In IEEE WCNC, pages 796{801, Mar. 2004. [26] J. F. Kurose and K. W. Ross. Computer Networking. Addison-Wesley, 2001. [27] G. Lu, B. Krishnamachari, and C. Raghavendra. Performance Evaluation of the IEEE 802.15.4 MAC for Low-Rate Low-Power Wireless Network. In IEEE IPCC 2004, pages 701{706, April 2004. [28] J. Misic, V. B. Misic, and S. Sha‾. Performance of IEEE 802.15.4 beacon en- abled PAN with uplink transmissions in non-saturation modeVaccess delay for ‾nite bu®ers. In IEEE BroadNets 2004, pages 416{425, 2004. [29] J. Misic, S. Sha‾, and V. B. Misic. Avoiding theBottlenecks in the MAC Layer in 802.15.4 Low Rate WPAN. In ICPADS 2005, pages 363{367, 2005. [30] P. e. a. Nikolich. Technical report. [31] P. Z. Peebles. Probability, Random Variables and Random Signal Principles. McGraw-Hill, 1987. [32] D. Qiao, S. Choi, and K. G. Shin. Goodput analysis and link adaptation for ieee 802.11a wireless lans. IEEE Transactions on Mobile Computing, 1(4):278V292, Oct.- Dec 2002. [33] A. Sheth and R. Han. SHUSH: reactive transmit power control for wireless MAC protocols. In International Conference on Wireless Internet 2005, pages 18{25, July 2005. [34] S.-T. Sheu and Y.-Y. Shih. Day and Night Access (DNA) Scheme for Low Power IEEE 802.15.4 WPANs. In IEEE VTC-2006 Fall, pages 1{5, Sept. 2006. [35] S.-T. Sheu, Y.-Y. Shih, and L.-W. Chen. P-Frozen Contention Strategy (PFCS) for Solving Collision Chain Problem in IEEE 802.15. 4 WPANs. In IEEE VTC 2006-Spring, pages 1323{1327, May 2006. [36] S.-T. Sheu, Y. Tsai, and J. Chen. MR2RP: The Multi-Rate and Multi-Range Rout- ing Protocol for IEEE 802.11 Ad Hoc Wireless Networks. ACM/Kluwer Wireless Networks, 9(2):165{177, March 2003. [37] F. A. Tobagi and L. Kleinrock. Packet Switching in Radio Channels: Part II-The Hidden Terminal Problem in Carrier Sense Multiple-Access and the Busy-Tone So- lution. IEEE Transactions on Communications, COM-23(12):1417{1433, Dec. 1975. [38] T. C. W, B.-B. Jian, and S.-C. Lo. An adaptive retransmission scheme with QoS support for the IEEE 802.11 MAC enhancement. In IEEE VTC 2002, pages 70{74, May 2002. [39] G. W.Wong and R. Donaldson. Improving the qos performance of edcf in ieee 802.11e wireless lans. In IEEE Paci‾c Rim Conference on Communications, Computers and signal Processing (PACRIM), pages 392{396, Aug. 2003. [40] C. Wu and V. Li. Receiver-initiated busy-tone multiple access in packet radio net- works. In ACM workshop on Frontiers in computer communications technology, Aug. 1987. [41] K. Xu, M. Gerla, and S. Bae. How e®ective is the IEEE 802.11 RTS/CTS handshake in ad hoc networks. In IEEE Globecom 2002, pages 72{76, Nov. 2002. [42] S.-Y. N. Y.-C. Tseng and E.-Y. Shih. Adaptive Approaches to Relieving Broadcast Storms in a Wireless Multihop Mobile Ad Hoc Network. IEEE Transactions on Computers, 52:545{557, May 2003. [43] X. Yang and N. H. Vaidya. On the physical carrier sense in wireless ad hoc networks. In IEEE INFOCOM 2005, March 2005. [44] H. Zhai and Y. Fang. Physical carrier sensing and spatial reuse in multirate and multihop wireless ad hoc networks. In IEEE INFOCOM 2006, pages 1{12, April 2006. [45] H. Zhai, J. Wang, Y. Fang, and D. Wu. A dual-channel mac protocol for mobile ad hoc networks. In IEEE Globecom 2004, pages 27{32, Nov. 2004. [46] H. Zhai, J. Wang, Y. Fang, and D. Wu. A dual-channel MAC protocol for mobile ad hoc networks. IEEE Transactions on Wireless Communications, 5(11):3224{3233, Nov. 2006. [47] H. Zhai, J. Wang, Y. Fang, and D. Wu. Medium access control in mobile ad hoc net- works: Challenges and solutions. Wireless Communications and Mobile Computing (Special issue on Ad Hoc Networks), 6(2):151{170, March 2006. [48] J. Zheng and M. J. Lee. Will IEEE 802.15.4 Make Ubiquitous Networking a Reality?: A Discussion on a Potential Low Power, Low Standard. IEEE Communications Magazine, 42:140{146, June 2004. [49] J. Zhu, X. Guo, L. L. Yang, and W. Steven. A single-channel solution for transmission power control in wireless ad hoc networks. In ACM international symposium on Mobile ad hoc networking and computing, pages 210{221, 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43749 | - |
| dc.description.abstract | 近年來無線網路技術的快速成長,進而帶動了無線網路使用者的大幅增加。而現今最成熟的無線網路技術就是IEEE 802.11,它已經可以提供足夠的頻寬去傳送即時的多媒體資料。另外一種新的無線網路技術(IEEE 802.15.4)逐漸變得成熟,IEEE 802.15.4是一種無線個人網路傳送技術,它能供提供短距離、低功率、低成本的傳輸方式。
IEEE 802.11是使用載波檢測多重存取/碰撞避免(CSMA/CA)的方式來傳送資料, 而IEEE 802.15.4是去修改原來的載波檢測多重存取/碰撞避免技術來傳送資料, 讓IEEE 802.15.4可以符合省電的要求。它們都是屬於利用競爭式的方法來傳送資料。使用競爭式的方法來傳送資料它的優點是簡單、而且公平,但是它們使用無線頻寬是沒有效率的,進而會降低無線網路系統的效能。因此我們在本篇論文中將提出數個方法去改善利用競爭式的方法去傳送資料的無線網路效能(IEEE 802.11跟IEEE 802.15.4)。另外,我們提出分析及實驗的模型去驗證在本論文中我們所提出方法的效能。我們可以從實驗結果中得知我們所提出的方法確實相對於IEEE 802.11及IEEE 802.15.4有更好的效能。 | zh_TW |
| dc.description.abstract | With the explosive growth of wireless subscribers, wireless communication technologies
play an increasingly important role in recent years. With the development of IEEE 802.11 WLAN techniques, wireless network bandwidth has gradually become su±cient for many multimedia applications. Furthermore, the emergence of short-transmission- range wireless devices further boosts the development of wireless personal area networks (WPANs). When low cost and low power-consumption are considered, IEEE 802.15.4 emerges as a good alternative WPAN. To transmit data frames, both of wireless communication technologies (i.e., IEEE 802.11 and 802.15.4) utilize contention scheme to access channel. The carrier sense multiple access/collision avoidance (CSMA/CA) and modify CSMA/CA mechanism are utilized in contention-based of IEEE 802.11 and IEEE 802.15.4 for access channel, re- spectively. However, the contention-based wireless networks encounter some problems and result in pretty bad channel performance. This dissertation proposes some schemes to improve the channel performance of contention-based wireless networks. Our schemes can solve the bottleneck of contention-based wireless networks under di®erent wireless communication technologies. Furthermore, we develop the analytical model and simula- tion model to investigate the performance of our schemes. The numerical results indicate that performance of our schemes is superior to IEEE 802.11/IEEE 802.15.4 standard. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:27:35Z (GMT). No. of bitstreams: 1 ntu-98-D92922005-1.pdf: 2368249 bytes, checksum: eaeca5a6120d0d8838849c581fb2582a (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 IEEE 802.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 IEEE 802.15.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 E±cient and Fast Retransmission for Wireless Networks 15 2.1 The E±cient and Fast Retransmission (EFR) Schemes . . . . . . . . . . 15 2.2 The Analytical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 The Simulation Model and Numerical Examples . . . . . . . . . . . . . . 22 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 An Adaptive Contention Control Strategy for IEEE 802.15.4-based Wire- less Sensor Networks 31 3.1 Adaptive Contention Control Strategy . . . . . . . . . . . . . . . . . . . 31 3.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.1 Standard IEEE 802.15.4 MAC Implementation . . . . . . . . . . . 35 3.2.2 Adaptive Contention Control Strategy . . . . . . . . . . . . . . . 36 3.3 Simulation Model and Results . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4 A Cross-Layer Mechanism for Solving Hidden Device Problem in IEEE 802.15.4 Wireless Sensor Networks 50 4.1 Cross-Layer Detection and Allocation Scheme . . . . . . . . . . . . . . . 50 4.1.1 HDP and Address Detection in the PHY Layer . . . . . . . . . . 50 4.1.2 Time Allocation Algorithm in the MAC Layer . . . . . . . . . . . 52 4.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2.2 MAC Delay Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.3.1 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.3.2 Address Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3.3 CL-DNA Performance . . . . . . . . . . . . . . . . . . . . . . . . 66 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5 Conclusions and Future Works 72 Bibliography 74 | |
| dc.language.iso | en | |
| dc.subject | 載波檢測多重存取/碰撞避 | zh_TW |
| dc.subject | IEEE 802.15.4 | zh_TW |
| dc.subject | IEEE 802.11 | zh_TW |
| dc.subject | CSMA/CA | en |
| dc.subject | EEE 802.11 | en |
| dc.subject | IEEE 802.15.4 | en |
| dc.title | 以競爭方式傳送資料之無線網路的通道使用效能之改善 | zh_TW |
| dc.title | Improvement of Channel Utilization for Contention-Based
Wireless Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 郭錦福 | |
| dc.contributor.oralexamcommittee | 許獻聰,施吉昇,葉丙成,陳仁暉,郭大維,周承復 | |
| dc.subject.keyword | IEEE 802.11,IEEE 802.15.4,載波檢測多重存取/碰撞避, | zh_TW |
| dc.subject.keyword | EEE 802.11,IEEE 802.15.4,CSMA/CA, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
