Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43741
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂學一(Hsueh-I Lu)
dc.contributor.authorWei-Yang Liuen
dc.contributor.author劉偉揚zh_TW
dc.date.accessioned2021-06-15T02:27:22Z-
dc.date.available2012-08-20
dc.date.copyright2009-08-20
dc.date.issued2009
dc.date.submitted2009-08-17
dc.identifier.citation[1] A. Agrawal, P. Klein, and R. Ravi. When trees collide: an approximation algorithm for the generalized Steiner problem on networks. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, pages 134–144, 1991.
[2] P. Berman and V. Ramaiyer. Improved approximations for the Steiner tree problem. Journal of Algorithms, 17:381–408, 1994.
[3] M. Bern and P. Plassmann. The Steiner tree problem with edge lengths 1 and 2. Information Processing Letter, 32:171–176, 1989.
[4] T. Chakraborty, J. Chuzhoy, and S. Khanna. Network design for vertex connectivity. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages 167–176, 2008.
[5] X. Cheng, Y. Li, D.-Z. Du, and H. Q. Ngo. Steiner trees in industry. In Handbook of Combinatorial Optimization. Kluwer Academic, 2006.
[6] J. Chuzhoy and S. Khanna. Algorithms for single-source vertex connectivity. In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, pages 105–114, 2008.
[7] A. E. F. Clementi and L. Trevisan. Improved non-approximability results for minimum vertex cover with density constraints. In Proceedings of the 2nd Annual International Conference on Computing and Combinatorics, pages 333–342, 1996.
[8] Z. Galil and G. F. Italiano. Reducing edge connectivity to vertex connectivity. ACM SIGACT News, 22:57–61, 1991.
[9] M. X. Goemans, A. V. Goldberg, E. Tardos, S. A. Plotkin, D. B. Shmoys, and D. P. Williamson. Improved approximation algorithms for network design problems. In Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 223–232, 1994.
[10] S. Hougardy and H. J. Prommel. A 1.598 approximation algorithm for the Steiner problem in graphs. In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 448–454, 1999.
[11] S. Hsieh, S.Y. Yag. Approximating the selected internal Steiner tree. Theoretical Computer Science, 381:288–291, 2007.
[12] S.-Y. Hsieh, H.-M. Gao, and S.-C. Yang. On the internal Steiner tree problem. In Proceedings of the 4th Annual Conference on Theory and Applications of Models of Computation, pages 274–283, 2007.
[13] K. Jain. Factor 2 approximation algorithm for the generalized Steiner network problem. In Proceedings of the 39th annual IEEE Foundations of Computer Science, pages 448–457, 1998.
[14] M. Kapinski and A. Zelikovsky. New approximation algorithms for the Steiner tree problem. Journal of Combinatorial Optimization, 1:47–65, 1997.
[15] R. Karp. Reducibility among combinatorial problems. In Complexity of Computer Computations, pages 85–103. R.E Miller and J.W. Thatcher, 1972.
[16] G. Kortsarz, R. Krauthgamer, and J. R. Lee. Hardness of approximation for vertexconnectivity network-design problems. Approximation Algorithms for Combinatorial Optimization, 2462:185–199, 2002.
[17] X. Li, F. Zou, Y. Huang, D. Kim, and W. Wu. A better constant-factor approximation for selected-internal Steiner minimum tree. In Proceedings of the 14th Annual International Conference on Computing and Combinatorics, pages 568–576, 2008.
[18] H. Prommel and A. Steger. RNC-approximation algorithms for the Steiner problems. In Proceedings of the 14th Annual Symposium on Theoretical Aspects of Computer Science,pages 559–570, 1997.
[19] R. Ravi and D. P. Williamson. An approximation algorithm for minimum-cost vertexconnectivity problems. Algorithmica, 18:21–43, 1997.
[20] G. Robins and A. Zelikovsky. Improved Steiner tree approximation in graphs. In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 770–779, 2000.
[21] H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem in graphs. Mathematica Japonica, 6:573–577, 1980.
[22] A. Zelikovsky. An 11/6-approximation algorithm for the network Steiner problem. Algorithmica, 9:463–470, 1993.
[23] A. Zelikovsky. Better approximation bounds for the network and Euclidean Steiner tree problems. Technical report, CS-96-06, University of Virginia, 1996.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43741-
dc.description.abstract給定一個完全圖G跟一些不相交的點集R={R1,R2,...,Rk},內部史坦納森林的問題就是找一個總重量最輕的史坦納森林,而且在這史坦納森林裡每個點集內的點都要求相互連接且每個R點都不是葉子。若ρ'是史坦納森林問題的一個近似解,m是史坦納森林的連接組件(connected component)的數量,則我們針對內部史坦納森林的問題給予一個2ρ'+4logm的近似解。若k=1,這問題就是內部史坦納樹的問題。ρ是史坦納樹問題的近似解而且之前最好的結果是2ρ+1,我們則給予一個新的近似解2ρ。
此外,如果我們允許最後的圖可能會有循環(cycle)在裡面,也就是不再要求是樹或森林,我們就稱呼這問題是內部史坦納子圖的問題,而且同樣地也給予一個近似解的答案。
zh_TW
dc.description.abstractGiven a complete graph G = (V,E) with metric weight function c : E → R+ and a list R = {R1,R2, ...,Rk} of disjoint vertex subset of V , an internal Steiner forest problem is seek a Steiner forest such that the vertices in Ri are connected with each other and restricted to be internal vertex for this forest. Suppose ρ′ is the approximation ratio for the Steiner forest problem, and m is the number of connected component. we give a approximation ratio 2ρ′ + 4 logm for this problem. If k = 1, this problem is an internal Steiner tree problem, due to Hsieh. Suppose ρ is the approximation ratio for the Steiner tree problem, the previous result of an internal Steiner tree problem is 2ρ + 1 and we also obtain an approximation ratio 2ρ. Moreover, if our result graph allow to have cycle in the above problem, we address this case as internal Steiner subgraph problem and also give an approximation ratio.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:27:22Z (GMT). No. of bitstreams: 1
ntu-98-R94944030-1.pdf: 230916 bytes, checksum: 01d9a4562dea14eaa07a5b17e3c59eec (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsAcknowledgements........................i
Chinese Abstract.......................ii
English Abstract......................iii
1 Introduction................................1
2 Internal Steiner Tree Problem...............4
2.1 Proving Theorem 1.1...................4
3 Internal Steiner Forest Problem.............6
3.1 Proving Theorem 1.2...................7
4 Internal Steiner Subgraph Problem..........10
4.1 Proving Theorem 1.3..................10
Bibliography 12
dc.language.isoen
dc.title內部史坦納森林之近似演算zh_TW
dc.titleApproximating Internal Steiner Foresten
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高明達,何錦文
dc.subject.keyword史坦納樹,史坦納森林,zh_TW
dc.subject.keywordSteiner tree,Steiner forest,en
dc.relation.page14
dc.rights.note有償授權
dc.date.accepted2009-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
225.5 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved