Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43740Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 呂東武(Tung-Wu Lu) | |
| dc.contributor.author | Po-Hsiang Yu | en |
| dc.contributor.author | 游博翔 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:27:21Z | - |
| dc.date.available | 2013-08-19 | |
| dc.date.copyright | 2009-08-19 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-17 | |
| dc.identifier.citation | Abdel-Rahman, E. and M. S. Hefzy (1993). 'A two-dimensional dynamic anatomical model of the human knee joint.' Journal Of Biomechanical Engineering 115(4A): 357-365.
Anderson, F. C. and M. G. Pandy (2001). 'Dynamic optimization of human walking.' Journal of Biomechanical Engineering-Transactions of the Asme 123(5): 381-390. Anderson, F. C. and M. G. Pandy (2003). 'Individual muscle contributions to support in normal walking.' Gait & Posture 17(2): 159-169. Beynnon, B. D., B. C. Fleming, et al. (1995). 'Anterior cruciate ligament strain behavior during rehabilitation exercises ( in vivo).' American Journal of Sports Medicine 23(1): 24-34. Beynnon, B. D., M. H. Pope, et al. (1992). 'The effect of functional knee-braces on strain on the anterior cruciate ligament in vivo.' The Journal Of Bone And Joint Surgery. American Volume 74(9): 1298-1312. Blankevoort, L. and R. Huiskes (1991). 'Ligament-Bone Interaction in a Three-Dimensional Model of the Knee.' Journal Of Biomechanical Engineering 113(3): 263-269. Blankevoort, L., J. H. Kuiper, et al. (1991). 'Articular contact in a three-dimensional model of the knee.' Journal Of Biomechanics 24(11): 1019-1031. Caruntu, D. I. and M. S. Hefzy (2004). '3-D anatomically based dynamic modeling of the human knee to include tibio-femoral and patello-femoral joints.' Journal Of Biomechanical Engineering 126(1): 44-53. Escamilla, R. F., G. S. Fleisig, et al. (1998). 'Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises.' Medicine & Science in Sports & Exercise. 30(4): 556-69. Fujie, H., K. Mabuchi, et al. (1993). 'The use of robotics technology to study human joint kinematics: a new methodology.' Journal Of Biomechanical Engineering 115(3): 211-217. Gage, J. R., P. A. Deluca, et al. (1995). 'Gait Analysis: principles and applications.' The Journal of Bone and Joint Surgery 77-A(10): 1607-1623. Grood, E. S. and M. S. Hefzy (1982). 'An analytical technique for modeling knee joint stiffness--Part I: Ligamentous Forces.' Journal of Biomechanical Engineering-Transactions of the Asme 104(4): 330-337. Hefzy, M. S. and E. S. Grood (1983). 'An analytical technique for modeling knee joint stiffness--Part II: Ligamentous geometric nonlinearities.' Journal of Biomechanical Engineering-Transactions of the Asme 105(2): 145-153. Hsu, C.-C. (2005). Development of a Robot-Based Testing System for the Study of Joint Biomechanics. Institute of Biomedical Engineering, National Taiwan University: 76. Kadaba, M. P., H. K. Ramakrishnan, et al. (1990). 'Measurement of lower extremity kinematics during level walking.' Journal of Orthopaedic Research 8(3): 383-392. Kanamori, A., S. L. Y. Woo, et al. (2000). 'The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology.' Arthroscopy: The Journal of Arthroscopic & Related Surgery 16(6): 633-639. Lafortune, M. A., P. R. Cavanagh, et al. (1992). 'Three-dimensional kinematics of the human knee during walking.' Journal of Biomechanics 25(4): 347-357. Lafortune, M. A., M. J. Lake, et al. (1995). 'Transfer function between tibial acceleration and ground reaction force.' Journal Of Biomechanics 28(1): 113-117. Lin, T.-Y. (2007). In Vivo Forces Transmitted in the Knee Ligaments During Laxity Test and Sit-to-Stand. Institute of Biomedical Engineering, College of Engineering. Taipei, National Taiwan University: 76. Lu, T.-W., S. J. G. Taylor, et al. (1997). 'Influence of muscle activity on the forces in the femur: an in vivo study.' Journal of Biomechanics 30(11/12): 1101-1106. Lu, T. W. and J. J. O'Connor (1996). 'Fibre recruitment and shape changes of knee ligaments during motion: as revealed by a computer graphics-based model.' Proceedings Of The Institution Of Mechanical Engineers. Part H, Journal Of Engineering In Medicine 210(2): 71-79. Lu, T. W. and J. J. O'Connor (1996). 'Lines of action and moment arms of the major force-bearing structures crossing the human knee joint: comparison between theory and experiment.' Journal Of Anatomy 189 ( Pt 3): 575-585. Lu, T. W. and J. J. O'Connor (1999). 'Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints.' Journal Of Biomechanics 32(2): 129-134. Markolf, K. L., J. F. Gorek, et al. (1990). 'Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique.' J Bone Joint Surg Am 72(4): 557-567. Martelli, S., A. Joukhadar, et al. (1998). 'Fiber-based anterior cruciate ligament model for biomechanical simulations.' Journal Of Orthopaedic Research: Official Publication Of The Orthopaedic Research Society 16(3): 379-385. Nordin, M. and V. H. Frankel, Eds. (2001). Basic Biomechanics of the Muscloskeletal System. O'Connor, J. J., T. L. Shercliff, et al. (1989). 'The geometry of the knee in the sagittal plane.' Proceedings Of The Institution Of Mechanical Engineers. Part H, Journal Of Engineering In Medicine 203(4): 223-233. Pandy, M. G. (2001). 'Computer modeling and simulation of human movement.' Annual Review of Biomedical Engineering 3: 245-273. Pandy, M. G., F. C. Anderson, et al. (1992). 'A Parameter Optimization Approach for the Optimal Control of Large-Scale Musculoskeletal Systems.' Journal Of Biomechanical Engineering 114(4): 450-460. Ramsey, D. K., P. F. Wretenberg, et al. (2003). 'Methodological concerns using intra-cortical pins to measure tibiofemoral kinematics.' Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal Of The ESSKA 11(5): 344-349. Rudy, T. W., G. A. Livesay, et al. (1996). 'A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments.' Journal Of Biomechanics 29(10): 1357-1360. Sutherland, D. H. and J. L. Hagy (1972). 'Measurement of gait movements from motion picture film.' The Journal Of Bone And Joint Surgery. American Volume 54(4): 787-797. Tsai, T.-Y. (2004). Measurement of the Kinematics of Normal and ACL Deficient Knees Using Fluoroscopy with Computer Bone Models. Institute of Biomedical Engineering, College of Engineering. Taipei, National Taiwan University: 93. Wilson, D. R., J. D. Feikes, et al. (1998). 'Ligaments and articular contact guide passive knee flexion.' Journal Of Biomechanics 31(12): 1127-1136. Wilson, D. R., J. D. Feikes, et al. (2000). 'The components of passive knee movement are coupled to flexion angle.' Journal Of Biomechanics 33(4): 465-473. Wismans, J., F. Veldpaus, et al. (1980). 'A three-dimensional mathematical model of the knee-joint.' Journal of Biomechanics 13(8): 677-685. Zavatsky, A. B. and J. J. O'Connor (1992). 'A model of human knee ligaments in the sagittal plane. Part 1: Response to passive flexion.' Proceedings Of The Institution Of Mechanical Engineers. Part H, Journal Of Engineering In Medicine 206(3): 125-134. Zavatsky, A. B. and J. J. O'Connor (1992). 'A model of human knee ligaments in the sagittal plane. Part 2: Fibre recruitment under load.' Proceedings Of The Institution Of Mechanical Engineers. Part H, Journal Of Engineering In Medicine 206(3): 135-145. Zavatsky, A. B. and J. J. O'Connor (1993). 'Ligament forces at the knee during isometric quadriceps contractions.' Journal of Engineering of Medicine 206: 7-18. Zavatsky, A. B. and J. J. O'Connor (1994). 'Three-dimensional geometrical models of human knee ligaments.' Proceedings of the Institution of Mechanical Engineers, Part H (Journal of Engineering in Medicine) 208(H4): 229-240. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43740 | - |
| dc.description.abstract | 膝關節是人體中極為重要的一個關節。膝關節周遭的肌肉、韌帶、關節面之間負責的力學互動決定了膝關節的活動方式。其中十字韌帶不但連結股骨以及脛骨,提供膝關節自由度上的限制,在膝關節活動的過程中也承受拉力。由於膝關節在人體運動的過程中常承受較大的力量,因此亦常因過當的受力而產生傷害。而在過去的統計研究中發現,膝關節的傷害中,比例最高的就是韌帶的傷害,其中前十字韌帶的受傷比例高達85%,因此長久以來人們一直希望能夠了解人體活動時韌帶所承受的力量。
過去已有許多學者研究膝關節的運動學以及力動學,藉此進一步了解十字韌帶的受力情形。經由試體研究,學者們了解膝關節運動的過程中各骨頭之間相互運動的關係,亦了解十字韌帶在膝關節的運動中所扮演的角色,同時也對韌帶的力量形變特性有較清楚的了解。活體研究則因為在實際執行上有許多限制,因此較少學者進行此研究,轉而發展數學模型。經由數學模型,結合運動學的量測資料,就可以求出欲了解的組織內力。 本研究參考文獻中的模型,改進文獻中的方法,考慮十字韌帶在運動過程中的纏繞行為,以及兩側副韌帶受股骨與脛骨影響所造成的形變,進一步了解韌帶內部纖維走向以及受拉伸的程度,以更接近實際情況的幾何變化來模擬韌帶纖維拉伸分布情形。此模型從電腦斷層影像以及核磁共振影像中截取骨骼模型以及韌帶資訊,再以六軸機械手臂搭配紅外線立體攝影術進行試體實驗取得膝關節在非受力情況下的運動學資料來進行被動動作模擬以及拉伸模擬。模擬的結果與過去文獻結果相符合。 | zh_TW |
| dc.description.abstract | Knee joints play very important roles in human bodies. The muscles, ligaments, and joint surfaces surround knees decide the kinematics of knees. Ligaments link a femur and a tibia, limit the motion of a knee, and sustain tensile forces during the motion.
Knee joints sustain larger forces usually during body motions, so knees were common to be injured while people apply improper forces to them. It is reported that the injuries in ligaments have the highest percentage of the injuries in knees. 85% percent of ligament-injury happened in anterior cruciate ligament. Therefore, people tried hardly to understand how ligaments take forces during body motions. In this study, a 3-D fibre-based model of ligaments was established. Wrapping and bone-ligament interaction were considered while computing the shape of ligaments in different knee motions. As the input parameters of the model, MRI images provided data of attachment areas, and CT images provided bone model. Computer simulations of a left knee contained femur, tibia, fibula, cruciate ligaments, and collateral ligaments were performed. Shape changes of ligaments and fibre recruitment were shown via color maps, and the result were compared with literature. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:27:21Z (GMT). No. of bitstreams: 1 ntu-98-R96548024-1.pdf: 5226208 bytes, checksum: 2764a261f038ad924c8f71698155804f (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 摘要 II
ABSTRACT III 第壹章、 緒論 1 第一節、 背景 1 第二節、 膝關節解剖構造 3 第三節、 正常膝關節之運動學 5 第四節、 韌帶之組成及力學特性 6 第貳章、 文獻回顧 9 第一節、 運動學量測方法 10 第二節、 內力之量測方法 13 一、 試體研究 13 二、 活體研究 14 三、 數學模型 15 第三節、 研究目的 19 第四節、 研究材料及方法 20 第參章、 常態韌帶數學模型之建構 21 第一節、 韌帶外型與假說條件 21 第二節、 參數定義 23 一、 初始長度 23 二、 接觸面積 23 三、 運動學資料 23 第三節、 數學模型 24 一、 韌帶纖維排列 24 二、 不同截面間之點對應 25 三、 截面形狀不一致之韌帶纖維分佈 28 第四節、 韌帶模型之建構 31 第肆章、 膝關節韌帶數學模型之建構 33 第一節、 參數取得 33 一、 骨頭立體模型以及韌帶骨頭接觸面之取得 33 二、 韌帶骨頭接觸面投影及橢圓契合 35 第二節、 骨頭運動學資料 38 一、 實驗儀器及設備 38 二、 試體準備 38 三、 實驗流程與方法 39 第三節、 三維十字韌帶數學模型之建構 40 一、 相對位置判定 42 二、 韌帶纏繞行為 44 第四節、 三維側副韌帶數學模型之建構 50 一、 韌帶與骨頭之交互作用 50 第伍章、 結果 54 第一節、 韌帶外觀模擬 54 第二節、 韌帶接觸面參數 54 第三節、 韌帶纖維拉伸模擬 55 一、 點密度結果 55 二、 韌帶纖維拉伸分佈 56 三、 韌帶纖維徵召 59 第陸章、 討論 61 第柒章、 結論與未來展望 62 第捌章、 參考文獻 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 數學模型 | zh_TW |
| dc.subject | 膝關節 | zh_TW |
| dc.subject | 韌帶 | zh_TW |
| dc.subject | 韌帶纖維 | zh_TW |
| dc.subject | fibre-based model | en |
| dc.subject | simulation | en |
| dc.subject | cruciate ligaments | en |
| dc.subject | knee | en |
| dc.title | 膝關節運動中韌帶纖維徵召與形狀改變之數學模擬 | zh_TW |
| dc.title | Mathematical Modeling of the Fibre Recruitment and Shape Changes of Knee Ligaments During Motion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳祥和,林聰穎 | |
| dc.subject.keyword | 膝關節,韌帶,韌帶纖維,數學模型, | zh_TW |
| dc.subject.keyword | knee,fibre-based model,cruciate ligaments,simulation, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| Appears in Collections: | 醫學工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-98-1.pdf Restricted Access | 5.1 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
