Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43739
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張煥宗
dc.contributor.authorChe-An Linen
dc.contributor.author林哲安zh_TW
dc.date.accessioned2021-06-15T02:27:19Z-
dc.date.available2009-08-21
dc.date.copyright2009-08-21
dc.date.issued2009
dc.date.submitted2009-08-17
dc.identifier.citation第一章 奈米材料的研究
[1] Kometani, N.; Tsubonishi, M.; Fujita, T.; Asami, K.; Yonezawa, Y. Langmuir 2001, 17, 578–580.
[2] Yee, C. K.; Ulman, A.; Ruiz, J. D.; Parikh, A.; White, H.; Rafailovich, M. Langmuir 2003, 19, 9450–9458.
[3] Kim, J. H.; Lee, T. R. Chem. Mater. 2004, 16, 3647–3651.
[4] Kaifer, A. E.; Strimbu, L.; Liu, J. Langmuir 2003, 19, 483–485.
[5] Jones, C. D.; Serpe, M. J.; Schroeder, L.; Lyon, L. A. J. Am. Chem. Soc. 2003, 18, 5292–5293.
[6] Ivanisevic, A.; Reynolds, M. F.; Bursyn, J. N.; Ellis, A. B. J. Am. Chem. Soc. 2000, 122, 3731–3738.
[7] Gemeinhart, R. A.; Luo, D.; Saltzman, W. M. Biotechnol. Prog. 2005, 21, 532–537.
[8] Ash, B. J.; Siegel, R. W.; Schadler, L. S. Marcomolecules 2004, 37, 1358–1369.
[9] Fleming, D. A.; Williams, M. E. Langmuir 2004, 20, 3021–3023.
[10] Sun, Y.; Xia, Y. Science 2002, 298, 2126–2179.
[11] De dood, M. J. A.; Berkhout, B.; van Kats, C. M.; Polman, A.; van Blaaderen, A. Chem. Mater. 2002, 14, 2849–2853.
[12] Murphy, C. J.; Jana, N. R. Adv. Mater. 2002, 14, 80–82.
[13] Lee, K.; Seo, W. S.; Park, J. T. J. Am. Chem. Soc. 2003, 125, 3408–3409.
[14] Sun, Y.; Gates, B.; Mayers, B.; Xia Y. Nano Lett. 2002, 2, 165–168.
[15] Nishiyama, N.; Tanaka, S.; Egashira, Y.; Oku, Y.; Ueyama, K. Chem. Mater. 2003, 15, 1006–1011.
[16] Tanaka, S.; Nishiyama, N.; Oku, Y.; Egashira, Y.; Ueyama, K. J. Am. Chem. Soc. 2004, 126, 4854–4858.
[17] Li, Y.; Boone, E.; El–Sayed, M. A. Langmuir 2003, 18, 4921–4925.
[18] Chao. M. C.; Lin, H. P.; Sheu, H. S.; Mou, C. Y. Studies in Surf. Sci. & Catal. 2002, 141, 387.
[19] Bohern, C. F. Absorption and Scattering of Light by Small Particles; Wiley: Berlin, 1998.
[20] Dabbousi, B. O.; Rodriguez–Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. J. Phys. Chem. B 1997, 101, 9463–9475.
[21] Bailey, R. E.; Nie, S. J. Am. Chem. Soc. 2003, 125, 7100–7106.
[22] Poznyak, S. K.; Talapin, D. V.; Shevchenko, E. V.; Weller, H.; Nano Lett. 2004, 4, 693–698.
[23] Wilson, R. Chem. Soc. Rev. 2008, 37, 2028–2045.
[24] Turkevich, J.; Garton, G.; Stevenson, P. C. J. Colloid Sci. 1954, 9, 26–31.
[25] Frens, G. Nature 1973, 241, 20–27.
[26] Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Chem. Commun. 1994, 801–808.
[27] Brown, L. O.; Hutchison, J. E. J. Am. Chem. Soc. 1999, 121, 882–891.
[28] Warner, M. G.; Reed, S. M.; Hutchison, J. E. Chem. Mater. 2000, 12, 3316–3324.
[29] Weare, W. W.; Reed, S. M.; Warner, M. G.; Hutchison, J. E. J. Am. Chem. Soc. 2000, 122, 12890–12898.
[30] Mooradian, A. Phys. Rev. Lett. 1969, 22, 185–193.
[31] Boyd, G.T.; Yu, Z. H.; Shen, Y. R. Phys.Rev. B 1986, 33, 7923–7930.
[32] Chen, C. K.; Heinz, T. F.; Ricard, D.; Shen, Y. R. Phys. Rev. B 1983, 27, 1965–1974.
[33] Boyd, G.T.; Rasing, T.; Leite J. R. R.; Shen, Y. R. Phys. Rev. B 1984, 30, 519–526.
[34] Link, S.; El–Sayed, M. A. Annu. Rev. Phys. Chem. 2003, 54, 331–366.
[35] Link, S.; El–Sayed, M. A.; Schaaff, T. G.; Whetten, R. L. Chem. Phys. Lett. 2002, 356, 240–246.
[36] Huang, T.; Murray, R. W. J. Phy. Chem. B 2001, 105, 1249–1258.
[37] Wang, G.; Huang, T.; Murray, R. W.; Menard, L.; Nuzzo, R. G. J. Am. Chem. Soc. 2005, 127, 812–813.
[38] Link, S.; Beeby, A.; FitzGerald, S.; El–Sayed, M. A.; Schaaff, T. G.; Whetten, R. L. J. Phys. Chem. B 2002, 106, 3410–3416.
[39] Zheng, J.; Petty, J. T.; Dickson, R. M. J. Am. Chem. Soc. 2003, 125, 7780–7781.
[40] Zheng, J.; Zhang, C. W.; Dickson, R. M. Phys. Rev. Lett. 2004, 93, 077402.
[41] Kumar, S.; Harrison, N.; Richards–Kortum, R.; Sokolov, K. Nano Lett. 2007, 7, 1338–1343.
[42] Jain, P. K.; Eustis, S.; El–Sayed, M. A. J. Phys. Chem. B 2006, 110, 18243–18253.
[43] Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature, 1996, 382, 607–609.
[44] Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Science, 1997, 277, 1078–1081.
[45] Moller, R.; Fritzsche, W. Curr. Pharm. Biotechnol. 2007, 8, 274–285.
[46] Nam, J. M.; Stoeva, S. I.; Mirkin, C. A. J. Am. Chem. Soc. 2004, 126, 5932–5933.
[47] Liu, J.; Lu, Y. Chem. Commun. 2007, 4872–4874.
[48] Zhao, W.; Chiuman, W.; Lam, J. C. F.; McManus, S. A.; Chen, W.; Cui, Y.; Pelton, R.; Brook, M. A.; Li, Y. J. Am. Chem. Soc. 2008, 130, 3610–3618.
[49] Wang, W.; Chen, C.; Qian, M.; Zhao, X. S. Anal. Biochem. 2008, 373, 213–230.
[50] Aslan, K.; Zhang, J.; Lakowicz, J. R.; Geddes, C. D. J. Fluoresc. 2004, 14, 391–400.
[51] Aslan, K.; Lakowicz, J. R.; Geddes, C. D. Anal. Chem. 2005, 77, 2007–2014.
[52] Thanh, N. T. K., Rosenzweig, Z. Anal. Chem. 2002, 74, 1624–1628.
[53] Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Springer: New York, 2006.
[54] Dulkeith, E.; Ringler, M.; Klar, T. A.; Feldmann, J.; Javier, A. M.; Parak, W. J. Nano Lett. 2005, 5, 585–589.
[55] Demers, L. M.; Mirkin, C. A.; Mucic, R. C.; Robert, A.; Reynold, I.; Letsinger, R. L.; Elghanian, R.; Viswanadham, G. Anal. Chem. 2000, 72, 5535–5541.
[56] Oh, E.; Hong, M. Y., Lee, D.; Nam, S. H.; Yoon, H. C.; Kim, H. S. J. Am. Chem. Soc. 2005, 127, 3270–3271.
[57] Dubertret, B.; Calame, M.; Libchaber, A. J. Nat. Biotechnol. 2001, 19, 365–370.
[58] Wang, Z.; Kanaras, A. G.; Bates, A. D.; Crosstick, R.; Burst, M. J. Mater. Chem. 2004, 14, 578–580.
[59] Ray, P.; Darbha, G.; Ray, A.; Walker, J.; Hardy, W. Plasmonics 2007, 2, 173.
[60] Niemeyer, C. M.; Angew. Chem. Int. Ed. 2001, 40, 4128–4158.
[61] Huang, C. C.; Yang, Z.; Lee, K. H.; Chang, H. T. Angew. Chem. Int. Ed. 2007, 46, 6824–6828.
[62] Huang, C. C.; Chiang, C. K.; Lin, Z. H.; Lee, K. H.; Chang, H. T. Anal. Chem. 2008, 80, 1497–1504.
[63] Chen, S. J.; Chang, H. T. Anal. Chem. 2004, 76, 3727–3734.
第二章 修飾蛋白質A的螢光金量子點在免疫球蛋白G偵測的應用
[1] Boes, M.; Schmidt, T.; Linkemann, K.; Beaudette, B. C.; Marshak-Rothstein, A.; Chen, J. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 1184–1189.
[2] Feldmann, M.; Brennan, F. M.; Maini, R. N. Cell 1996, 85, 307–310.
[3] Kotzin, B. L. Cell 1996, 85, 303–306.
[4] Hahn, B. H. N. Eng. J. Med. 1998, 338, 1359–1368.
[5] Figg, W. D.; McLeod, H. L. Handbook of Anticancer Pharmacokinetics and Pharmacodynamics; Humana Press: Totowa (NJ), 2004.
[6] Huang, C. C.; Chiang, C. K.; Lin, Z. H.; Lee, K. H.; Chang, H. T. Anal. Chem. 2008, 80, 1497–1504.
[7] Nelson, D. L.; Cox, M. M. Lehninger Principles of Biochemistry; Freeman: New York, 2004.
[8] Nakatake, N.; Sanders, J.; Richards, T.; Burne, P.; Barrett, C.; Pra, C. D.; Presotto, F.; Betterle, C.; Furmaniak, J.; Smith, B. R. Thyroid 2006, 16, 1077–1084.
[9] Davis, D. G.; Schaefer, D. M. W.; Hinchcliff, K. W.; Wellman, M. L.; Willet, V. E.; Fletcher, J. M. J. Vet. Intern. Med. 2005, 19, 93–96.
[10] Hudgens, K. A. R.; Tyler, J. W.; Besser, T. E.; Krytenberg, D. S. Am. J. Vet. Res. 1996, 57, 1711–1713.
[11] Clabourgh, D. L.; Conboy, H. S.; Roberts, M. C. J. Am. Vet. Med. Assoc. 1989, 194, 1717–1720.
[12] McCue, P. M. Am. J. Vet. Res. 2007, 68, 1005–1009.
[13] Etzel, L. R.; Strohbehn, R. E.; McVicker, J. K. Am. J. Vet. Res. 1997, 58, 1201–1205.
[14] Kent, J. E.; Blackmore, D. J. Equine. Vet. J. 1985, 17, 125–129.
[15] Saha, K.; Bender, F.; Gizeli, E. Anal. Chem. 2003, 75, 835–842.
[16] Coligan, J. E. Current Protocols in Immunology; Wiley: New York, 1996.
[17] Hahn, R.; Schlegel, R.; Jungbauer, A. J. Chromatogr. B 2003, 790, 35–51.
[18] Bottomley, S. P.; Sutton, B. J.; Gore, M. G. J. Immunol. Methods 1995, 182, 185–192.
[19] Zatta, P. F. J. Biochem. Biophys. Methods 1996, 32, 7–13.
[20] Huang, C. C.; Yang, Z.; Lee, K. H.; Chang, H. T. Angew. Chem. Int. Ed. 2007, 46, 6824–6828.
[21] Nuzzo, R. G.; Zegarski, B. R.; Dubois, L. H. J. Am. Chem. Soc. 1987, 109, 733–740.
[22] Brűggemann, M.; Williams, G. T.; Bindon, C. I.; Clark, M. R.; Walker, M. R.; Jefferis, R.; Waldmann, H.; Neuberger, M. S. J. Exp. Med. 1987, 166, 1351–1361.
[23] Li, R.; Dowd, V.; Stewart, D. J.; Burton, S. J.; Lowe, C. R. Nat. Biotechnol. 1998, 16, 190–195.
[24] Deisenhofer, J. Biochemistry 1981, 20, 2361–2370.
[25] Burton, D. R. Mol. Immunol. 1985, 22, 161–206.
[26] Tirumalai, R. S.; Chan, K. C.; Prieto, D. A.; Issaq, H. J.; Conrads, T. P.; Veenstra, T. D. Mol. Cell. Proteomics 2003, 2, 1096–1103.
第三章 利用修飾尼羅紅的金奈米粒子選擇性偵測血漿中的生物硫醇分子
[1] Bayle, C.; Causse, E.; Couderc, F. Electrophoresis 2004, 25, 1457–1472.
[2] Pastore, A.; Federici, G.; Bertini, E.; Piemonte, F. Clin. Chim. Acta 2003, 333, 19–39.
[3] Cereser, C.; Boget, S.; Parvaz, P.; Revol, A. Toxicology 2001, 163, 153–162.
[4] Droge, W.; Schulze-Osthoff, K.; Mihm, S.; Galter, D.; Schenk, H.; Eck, H.; Roth, S.; Gmunder, H. FASEB J. 1994, 8, 1131–1138.
[5] Nekrassova, O.; Lawrence, N. S.; Compton, R. G. Talanta 2003, 60, 1085–1095.
[6] Alkhuder, K.; Meibom, K. L.; Dubail, I.; Dupuis, M.; Charbit, A. PLoS Pathog. 2009, 5, 1–11.
[7] Ozkan, Y.; Ozkan, E.; Simsek, B. Int. J. Cardiol. 2002, 82, 269–277.
[8] Droge, W. Physiol. Rev. 2002, 82, 47–95.
[9] Droge, W.; Schipper, H. M. Aging Cell 2007, 6, 361–370.
[10] Carru, C.; Deiana L.; Sotgia, S.; Pes, G. M.; Zinellu, A. Electrophoresis 2004, 25, 882–889.
[11] Zinellu, A.; Sotgia, S.; Posadino, A. M.; Pasciu, V.; Perino, M. G.; Tadolini, B.; Deiana L.; Carru, C. Electrophoresis 2005, 26, 1063–1070.
[12] Nolin, T. D.; McMenamin, M. E.; Himmelfarb, J. J. Chromatogr. B 2007, 852, 554–561.
[13] Nuzzo, R. G.; Zegarski, B. R.; Dubois, L. H. J. Am. Chem. Soc. 1987, 109, 733–740.
[14] Chen, S. J.; Chang, H. T. Anal. Chem. 2004, 76, 3727–3734.
[15] Nelson, D. L.; Cox, M. M. Lehninger Principles of Biochemistry; Freeman: New York, 2004.
[16] Hogg, N. Free Radic. Biol. Med. 1999, 27, 28–33.
[17] Misra, H. P. J. Biol. Chem. 1973, 249, 2151–2155.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43739-
dc.description.abstract我們研發兩種偵測生物分子的技術。首先我們利用11-巰基十一酸(11-mercaptoundecanoic acid,11-MUA)保護的螢光金量子點(gold nanodot,Au ND)偵測血漿中免疫球蛋白G(immunoglobulin G,IgG)。IgG為人體血漿中含量最多的抗體,其正常濃度範圍在34.0–105 μM。血漿IgG不足時會造成免疫力下降,過量時則為類風濕性關節炎及紅斑性狼瘡等自體免疫疾病的生理指標。藉由蛋白質A(protein A)與IgG之間良好的親和力,當修飾protein A的Au ND(PA-Au ND)與不同濃度的IgG反應時,PA-Au ND的螢光會隨IgG濃度增加而增加,因此PA-Au ND可做為血漿中IgG的探針,其偵測極限可達10 nM,線性範圍在50–250 nM(R2 = 0.998)。此方法對IgG的選擇性高─與血漿運鐵蛋白(transferrin)相較選擇性達117倍。將此方法應用於2位健康成人血漿IgG的偵測,所測得的濃度為45.4 ± 3.2及58.0 ± 4.7 μM。
  其次,我們應用修飾螢光染料分子尼羅紅(Nile Red,NR)的金奈米粒子(gold nanoparticle,Au NP)來選擇性的偵測單一種的生物硫醇分子(biological thiol)。當Au NP表面吸附NR時,兩者間會產生螢光共振能量轉移(fluorescence resonance energy transfer,FRET)及電子轉移(electron transfer),導致NR受Au NP消光。將生物硫醇分子加至NR-Au NP溶液時,其間會因形成強的硫金鍵結,而將NR從Au NP表面取代出來,導致溶液的螢光大幅增加。藉由觀察螢光改變程度,我們分別研究cysteine(Cys)、homocysteine(Hcy)和glutathione(GSH)的取代動力學,結果顯示取代速率順序為:Cys ~ Hcy > GSH。由於Cys溶液(pH 7.00)在空氣中加熱至95 ℃較Hcy和GSH易氧化,加熱後Cys溶液的取代動力學較Cys和Hcy緩慢4倍。藉由測量加熱1小時前後Cys溶液取代的螢光差值,可偵測Cys;其偵測極限達10 nM,線性範圍在100–1000 nM(R2 = 0.995)。此方法比直接取代NR-Au NP的結果(LOD 15 nM)更為靈敏。為提高此方法對Cys的選擇性,我們使用聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)來修飾NR-Au NP─GSH取代PVP-Au NP表面NR較Hcy和GSH緩慢20倍。此方法目前已可應用於選擇性偵測血漿硫醇分子模擬溶液中的Cys,此硫醇分子模擬溶液中包含Cys(11.74 μM)、Hcy(0.301 μM)、GSH(3.511 μM)、半胱胺甘胺酸(cysteinylglycine,3.584 μM)及γ-麩胺醯胺半胱胺酸(γ-glutamylcysteine,0.566 μM)。兩次實驗所測得的Cys濃度為11.72 μM(回收率99.8%)及10.96 μM(回收率93.4%)。
zh_TW
dc.description.abstractWe have developed two techniques for the detection of biomolecules of interest. First, 11-MUA-protected gold nanodots (Au NDs) have been prepared and employed for the detection of immunoglobulin G (IgG) in plasma. IgG is the most abundant antibody in plasma, with a normal concentration range over 34.0–105 μM. Plasma IgG at low levels causes poor immune systems, while at high levels can be indicators of autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Through the high-affinity binding between protein A and IgG, the fluorescence intensity of protein A-conjugated Au NDs (PA-Au NDs) increases upon increasing IgG concentration. For IgG, this approach provides a limit of detection (LOD) of 10 nM, a linear range over 50 and 250 nM (R2 = 0.998), and high selectivity (117-fold selectivity over transferrin). This approach has been validated by determining the concentrations of IgG in plasma samples from two healthy adults, with results of 45.4 ± 3.2 and 58.0 ± 4.7 μM (three measurements).
Secondly, we have demonstrated the detection of biological thiols through their replacement of Nile Red (NR) from the surfaces of gold nanoparticles (Au NPs). When NR is adsorbed onto Au NPs, FRET and electron transfer occur, leading to fluorescence quenching. Upon addition of the biological thiols to the solutions of NR-Au NPs, NR molecules are released to the bulk solution, leading to increased fluorescence. By monitoring the fluorescence changes, we separately investigated the replacement kinetics of Cys, Hcy and GSH, showing the decreasing order Cys ~ Hcy > GSH. Since Cys in solution at pH 7.00 is oxidized in the air at 95 ℃ more rapidly than Hcy and GSH are, its replacement kinetic is significantly (4-fold) slower than that of the other two. By measuring the differences in fluorescence intensity of Cys solutions with and without being heated for 1 hr, this approach provides an LOD of 10 nM for Cys, with a linear range over 100–1000 nM (R2 = 0.995). This approach is more sensitive than that (LOD 15 nM) of direct replacement without heating. In order to improve the selectivity of this approach toward Cys, polyvinylpyrrolidone (PVP) had been used to modify NR-Au NPs. The replacement of NR from PVP-Au NPs by GSH is slower (20-fold) than those by Cys and Hcy, which allows selective detection of Cys in two prepared solutions composed of Cys (11.74 μM), Hcy (0.301 μM), GSH (3.511 μM), cysteinylglycine (3.584 μM) and γ-glutamylcysteine (0.566 μM), with results of 11.72 μM (recovery 99.8%) and 10.96 μM (recovery 93.4%).
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:27:19Z (GMT). No. of bitstreams: 1
ntu-98-R96223215-1.pdf: 1707385 bytes, checksum: 84c4f549142b4644abbeb7f8454ec27f (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents第一章 奈米材料的研究
1.1 前言 1
1.2 奈米材料的定義和結構 2
1.3 奈米材料的特性 3
1.3.1 表面效應 3
1.3.2 小尺寸效應 4
1.3.3 量子侷限效應 4
1.4 金奈米粒子的簡介 5
1.5 金奈米粒子的合成方法 7
1.6 螢光金量子點的簡介 8
1.7 金奈米粒子在生化感測器的應用 10
1.7.1 表面電漿共振的應用 10
1.7.2 螢光消光的應用 11
1.8 金奈米粒子與蛋白質的結合方式 13
1.9 研究動機 14
1.10 參考文獻 16
第二章 修飾蛋白質A的螢光金量子點在免疫球蛋白G偵測的應用
2.1 前言 21
2.1.1 免疫球蛋白G的簡介 22
2.1.2 蛋白質A的簡介 24
2.2 實驗材料與方法 25
2.2.1 實驗試藥 25
2.2.2 磷酸鈉緩衝液與蛋白質溶液的製備 26
2.2.3 金量子點的合成 27
2.2.4 金量子點的光譜測定 27
2.2.5 金量子點的純化 28
2.3 實驗結果與討論 29
2.3.1 PA-Au ND的光學性質 29
2.3.2 PA-Au ND與IgG反應後的螢光變化 31
2.3.3 分析策略與流程 33
2.3.4 最佳化離心條件 35
2.3.5 pH值對PA-Au ND偵測IgG的影響 37
2.3.6 PA-Au ND的選擇性 39
2.3.7 利用PA-Au ND偵測IgG 41
2.3.8 血漿IgG的定量 43
2.4 結論 45
2.5 參考文獻 46
第三章 利用修飾尼羅紅的金奈米粒子選擇性偵測血漿中的生物硫醇分子
3.1 前言 48
3.2 實驗材料與方法 52
3.2.1 實驗試藥 52
3.2.2 金奈米粒子的合成 53
3.2.3 金奈米粒子的光譜鑑定 53
3.2.4 NR-Au NP 的製備 53
3.3 實驗結果與討論 55
3.3.1 生物硫醇分子對NR-Au NP的取代動力學 55
3.3.2 修飾高分子於NR-Au NP對取代動力學的影響 57
3.3.3 溫度及pH值對生物硫醇分子穩定性的影響 59
3.3.4 偵測Cys標準溶液及血漿硫醇分子模擬溶液 62
3.4 結論 65
3.5 參考文獻 66
圖目錄
圖2-1:利用PA-Au ND偵測IgG的流程示意圖 34
圖2-2:Protein A對Au ND螢光強度的影響 30
圖2-3:PA-Au ND分別與IgG、BSA反應的螢光強度變化圖 32
圖2-4:純化IgG-PA-Au ND的最佳離心條件圖 36
圖2-5:pH值對PA-Au ND偵測IgG的影響 38
圖2-6:PA-Au ND對IgG和其他血漿蛋白的選擇性 40
圖2-7:利用PA-Au ND定量IgG標準溶液的濃度 42
圖2-8:利用標準添加法定量血漿中的IgG濃度 44
圖3-1:生物硫醇分子的結構式 51
圖3-2:硫醇分子取代NR-Au NP的示意圖 51
圖3-3:Cys、Hcy和GSH在不同pH值取代NR-Au NP的動力學螢光圖 56
圖3-4:Cys、Hcy和GSH取代PEO-NR-Au NP及PVP-NR-Au NP的動力學螢光圖 58
圖3-5:Cys、Hcy和GSH在不同溫度處理1小時後取代NR-Au NP的螢光增加比值圖 60
圖3-6:Cys、Hcy和GSH在不同pH值處理1小時後取代NR-Au NP的螢光增加比值圖 61
圖3-7:Cys加熱前後取代PVP-NR-Au NP的螢光強度差值(Δ IF)對Cys濃度對數值做圖 63
圖3-8:偵測Cys的線性範圍 63
圖3-9:偵測血漿硫醇分子模擬溶液中Cys的標準添加圖 64
dc.language.isozh-TW
dc.subject蛋白質Azh_TW
dc.subject金量子點zh_TW
dc.subject螢光共振能量轉移zh_TW
dc.subject金奈米粒子zh_TW
dc.subject免疫球蛋白Gzh_TW
dc.subject尼羅紅zh_TW
dc.subject生物硫醇分子zh_TW
dc.subject取代動力學zh_TW
dc.subjectreplacement kineticsen
dc.subjectgold nanodotsen
dc.subjectgold nanoparticlesen
dc.subjectfluorescence resonance energy transferen
dc.subjectprotein Aen
dc.subjectimmunoglobulin Gen
dc.subjectNile reden
dc.subjectbiological thiolsen
dc.title金奈米粒子於血漿免疫蛋白和生物硫醇分子之感測zh_TW
dc.titleGold Nanoparticles for Sensing of Plasma Immunoproteins and Biological Thiolsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.coadvisor黃志清
dc.contributor.oralexamcommittee熊同銘,郭錦樺
dc.subject.keyword金量子點,金奈米粒子,螢光共振能量轉移,蛋白質A,免疫球蛋白G,尼羅紅,生物硫醇分子,取代動力學,zh_TW
dc.subject.keywordgold nanodots,gold nanoparticles,fluorescence resonance energy transfer,protein A,immunoglobulin G,Nile red,biological thiols,replacement kinetics,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2009-08-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved