請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43727
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖運炫(Yunn-Shiuan Liao) | |
dc.contributor.author | Chun-Lin Huang | en |
dc.contributor.author | 黃春霖 | zh_TW |
dc.date.accessioned | 2021-06-15T02:26:59Z | - |
dc.date.available | 2012-04-11 | |
dc.date.copyright | 2009-08-19 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-17 | |
dc.identifier.citation | [1] 陳仲誼,精微模具技術發展及應用市場概況分析,機械工業雜誌,民國九十六年一月。
[2] S. Filiz, L. Xie, Lee E. Weiss and O.B. Ozdoganlar,“Micromilling of microbarbs for medical implants,”International Journal of Machine Tools & Manufacture, Vol. 48, 2008, pp. 459-472. [3] http://www.ruentex.com.tw/trend-web/files/img-htm/micro.htm [4] 周俊宏,微細加工技術在金屬相關產業之應用,金屬工業研究發展中心,民國九十一年十二月。 [5] M.P. Vogler, X. Liu, S.G. Kapoor, R.E. Devor and K.F. Ehmann,“Development of meso-scale machine tool (mMT) systems,”Society of Manufacturing Engineers, MS02-181, 2002, pp. 1-9. [6] J. Chae, S.S. Park and T. Freiheit,“Investigation of micro-cutting operations,” International Journal of Machine Tools & Manufacture, Vol. 46, 2006, pp. 313-332. [7] J. D. Kim and D.S. Kim,“Theoretical analysis of micro-cutting characteristics in ultra-precision machining,”Journal of Materials Processing Technology, Vol. 49, 1995, pp. 387-398. [8] H. Weule, V. Huntrup and H. Tritschler,“Micro-cutting of steel to meet new requirements in miniaturization,”Annals of the CIRP, Vol. 50, 2001, pp. 61-64. [9] X. Liu, R.E. DeVor, S.G. Kapoor and K.F. Ehmann,“The mechanics of machining at the micro scale: assessment of the current state of the science,”Journal of Manufacturing Science and Engineering, Vol. 126, 2004, pp. 666-678. [10] X. Liu, M.B. Jun, R.E. DeVor and S.G. Kapoor,“Cutting mechanisms and their influence on dynamic forces, vibrations and stability in micro-end milling,” Proceedings of ASME International Mechanical Engineering Congress and Exposition, Anaheim, California, 2004, pp. 13-20. [11] B. Kim, M.C. Schmittdiel, F.L. Degertekin and T.R. Kurfess,“Scanning grating micro interferometer for MEMS metrology,”Journal of Manufacturing Science and Engineering, Vol. 125, 2003, pp. 202-209. [12] T. Moriwaki and E. Shamoto,“Ultra precision diamond turning of stainless steel by applying ultrasonic vibration,”Annals of the CIRP, Vol. 40/1, 1991, pp. 559-562. [13] D.A. Lucca, R.L. Rhorer and R. Komanduri,“Energy dissipation in the ultra precision machining of copper,”Annals of the CIRP, Vol. 40/1, 1991, pp. 69-72. [14] C.J. Kim, J. Rhett Mayor and J. Ni,“A static model of chip formation in micro scale milling,”Journal of Manufacturing Science and Engineering, Vol. 126, 2004 pp. 710-718. [15] T.A. Dow, E.L. Miller and K. Garrard,“Tool force and deflection compensation for small milling tools,”Precision Engineering, Vol. 28, 2004, pp. 31-45. [16] T. Moriwaki and K. Okuda,“Machinability of copper in ultra precision micro diamond cutting,”Annals of the CIRP, Vol. 38/1, 1989, pp. 115-118. [17] K. Weinert, P. Kahnis, V. Petzoldt and C. Peter,“Micro-milling of steel and NiTi SMA,”55th CIRP General Assembly, STC-C section meeting presentation file, Antalya, Turkey, 2005 [18] K. Lee and D.A. Dornfeld,“An experimental study on burr formation in micro milling aluminum an copper,”Transactions of the NAMRI/SME, Vol. 30, 2002, pp. 1-8. [19] D. Montgomery and Y. Altintas,“Mechanism of cutting forces and surface generation in dynamic milling,”ASME Journal of Engineering for Industry, Vol. 113, 1994, pp. 160-168. [20] M. Takacs, B. Vero and I. Meszaros,“Micromilling of metallic materials,”Journal of Materials Processing Technology, Vol. 138, 2003, pp. 152-155. [21] C. Mertens, S. Min and D. Dornfeld,“The influence of spindle speed on the micromachining process,”The 8th International Joint Workshop on Micro Fabrication, 2008, pp. 35-39. [22] 潘冠衛,振動加工應用於高速微銑削之研究,國立雲林科技大學機械工程所碩士論文,民國九十三年六月。 [23] 林維新、紀松水,切削理論,全華科技圖書股份有限公司,民國七十六年。 [24] 蘇春雄、沈金旺,銑床工作法,全華科技圖書股份有限公司,民國八十九年。 [25] S. Ramalingam and P. K. Wright,“Abrasive wear in machining: experiment with material of controlled microstructure,”ASME Journal of Engineering Materials and Technology, Vol. 103, 1981, pp. 151-156. [26] 范光照、張郭益,精密量測,高立圖書有限公司,民國九十年。 [27] 孫韓岳,單晶鑽石銑刀設計及其於微銑削鏡面加工之應用,國立台灣大學機械工程所碩士論文,民國九十六年六月。 [28] S. Ema and R. Davies,“Cutting Performance of End Mills with Different Helix Angles,”International of Machine Tools and Manufacture, Vol. 29, 1989, pp. 217-227. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43727 | - |
dc.description.abstract | 微元件在市場上的需求在近年來不斷增加,大量應用在航太、生醫、電子、通訊及汽車產業。而微銑削是生產微元件的一種製造方式,可以製造尺寸由幾十微米至厘米的微元件。
本論文使用直徑0.5mm、0.3mm兩種市售的微端銑刀和一般直徑10mm的端銑刀,加工6061鋁合金和S20C低碳鋼兩種金屬材料,以不同的切削速度加工後,利用光學輪廓儀量測表面粗糙度,經比較和觀察後發現直徑0.5mm及0.3mm的銑刀加工後之材料,表面粗糙度並未隨著主軸轉速的提升而顯著降低,而且發現切屑容易形成破片及粉末狀,並黏附在加工後的表面和刀具上,這些現象是一般傳統尺寸銑削不易發生的,針對這個問題本論文提出使用高壓空氣將切削液送入切削處的方法,可以改善加工後的表面粗糙度和刀具磨耗。 | zh_TW |
dc.description.abstract | Miniaturized components are increasing in demand for various application, such as aerospace, biomedical, electronics, communications and automotive. Micro-milling is a method to fabricate miniature devices and components with features that range from tens of micrometers to a few millimeters in size.
This study presents an experimental investigation of the different tool diameter with 0.3mm, 0.5mm and 10mm of 6061 aluminum alloy and S20C steel in traditional milling and micro milling process. It is found that cutting under higher spindle speed results in worse surface roughness due to chip adhesion. The chip always turns into arc chip and powdery in the micro milling process. But these phenomena are not easy to occur in the traditional milling process. This paper proposes a method which send the cutting fluid to the cutting zone by using compressed air may improve the surface roughness and adhesive wear of the tool. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:26:59Z (GMT). No. of bitstreams: 1 ntu-98-R95522717-1.pdf: 4040308 bytes, checksum: 7bdbe57decd568caa8fa5be38f32a9e3 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 中文摘要 I
英文摘要 II 目錄 III 圖目錄 V 符號說明 X 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 6 1.3 研究目的 9 1.4 本文架構 9 第二章 相關理論 11 2.1 切削力學 11 2.2 銑削速度 14 2.3 進給速度 14 2.4 磨耗理論 15 2.5 表面粗糙度 20 2.5.1 表面組織定義 20 2.5.2 表面粗糙度的表示法 23 第三章 實驗規劃與實驗設備 27 3.1 實驗方法 27 3.2 實驗參數的選用 29 3.3 工件材料選用 31 3.4 實驗設備 31 第四章 實驗結果與討論 40 4.1 使用直徑10mm端銑刀加工Al6061鋁合金實驗結果 40 4.2 使用直徑0.5mm端銑刀加工Al6061鋁合金及S20C低碳鋼實驗結果 42 4.2.1 6061鋁合金銑削部分 42 4.2.2 S20C低碳鋼銑削部分 45 4.3使用直徑0.3mm端銑刀加工6061鋁合金實驗結果 48 4.4 以不同切削液加注方式輔助微銑削實驗 52 4.4.1 使用高壓空氣加切削液輔助銑削鋁合金實驗 52 4.4.2 輔助加工成效驗證實驗 54 4.4.3 使用高壓空氣加切削液輔助銑削S20C低碳鋼實驗 60 第五章 結論與未來展望 63 5.1 結論 63 5.2 未來展望 64 參考文獻 65 | |
dc.language.iso | zh-TW | |
dc.title | 微銑削主軸轉速與表面粗糙度關聯性之研究 | zh_TW |
dc.title | The Relationship of Spindle Speed and Surface Roughness in Micromilling | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳順同,林憲茂(Hsien-Mou Lin) | |
dc.subject.keyword | 微銑削,切削速度,主軸轉速,表面粗糙度, | zh_TW |
dc.subject.keyword | Micromilling,Cutting Velocity,Spindle Speed,Surface Roughness, | en |
dc.relation.page | 68 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 3.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。