請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43717
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳文哲(Wen-Jer Wu) | |
dc.contributor.author | Ho-Huei Lee | en |
dc.contributor.author | 李和惠 | zh_TW |
dc.date.accessioned | 2021-06-15T02:26:44Z | - |
dc.date.available | 2012-08-20 | |
dc.date.copyright | 2009-08-20 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-17 | |
dc.identifier.citation | 李宏慶、陳勇、魯心安、馬煒梁。1999。薜荔 (Ficus pumila L.) 傳粉的代價。生態學雜誌18: 66-69。
何坤益。1991。愛玉與薜荔授粉生態之研究。國立中興大學森林學研究所碩士論文。60頁。 何坤耀。1987。愛玉授粉榕小蜂之生態及其在平地立足之可能性調查。中華昆蟲7: 37- 44。 林讚標。1991。愛玉子專論。林業叢刊第36號。128頁。 林讚標、劉哲政、楊居源、黃瑞祥、李永生、張森永。1990。愛玉與薜荔隱花果形態與其生化特性比較。林業試驗所研究報告季刊5: 37-43。 姚若潔。1998。薜荔榕小蜂與薜荔之共生關係。國立臺灣大學植物病蟲害學研究所碩士論文。63頁。 陳勇、李宏慶、馬煒梁。2002。愛玉及其傳粉昆蟲的共生關係。武漢植物學研究20: 315-319。 陳朝興。1994。臺灣產榕小蜂亞科之分類 (膜翅目: 榕小蜂科)。國立臺灣大學植物病蟲害學研究所博士論文。159頁。 陳穎儒。1994。榕果小蜂與正榕 (Ficus microcarpa) 之物候週期及種間關係。國立臺灣大學植物病蟲害學研究所碩士論文。72頁。 曾喜育。2004。臺灣產榕屬植物分類之研究。國立中興大學森林學系博士論文。396頁。 黃佳茵。2004。台灣產毛茛科鐵線蓮屬 (Clematis L.) 植物分子親緣關係之探討。國立臺灣大學生態學與演化生物學研究所碩士論文。111頁。 楊文沛。1992。愛玉子果膠酯酵素基因的分析。國立清華大學生命科學研究所碩士論文。 廖日京。1995。臺灣桑科植物之學名訂正 (再版)。國立臺灣大學農學院森林學系。17-122頁。 劉業經、呂福原、歐辰雄。1994。臺灣樹木誌。國立中興大學農學院叢書。329-348頁。 Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716-723. Anstett, M. C., M. Hossaert-McKey, and F. Kjellberg. 1997. Figs and fig pollinators: evolutionary conflicts in a coevoled mutualism. Trends Ecol. Evol. 12: 94-99. Baker, C. F. 1913. A study of caprification in Ficus nota. Philipp. J. Sci. 8: 63-83. Baraket, G., S. Olfa, C. Khaled, M. Messaoud, and M. Mohamed. 2008. Chloroplast DNA analysis in Tunisian fig cultivars (Ficus carica L.): Sequence variations of the trnL-trnF intergenic spacer. Biochem. Syst. Ecol. 36: 828-835. Berg, C. C. 1989. Classification and distribution of Ficus. Experientia 45: 605-611. Berg, C. C. 1990. Reproduction and evolution of Ficus (Moraceae): Traits connected with the adequate rearing of pollinators. Mem. N.Y. Bot. Gard. 5: 169-185. Berg, C. C., and J. T. Wiebes. 1992. African Fig Trees and Fig Wasps. Koninklijke Nederlandse Akademie van Wetenschappen Verhandelingen Afdeling Natuurkunde, Tweede Reeks, Deel 89. 298 pp. Chen, C. H., and L. Y. Chou. 1997. The Blastophagini of Taiwan (Hymenoptera: Agaonidae: Agaoninae). J. Taiwan Mus. 50: 113-154. Corner, E. J. H. 1965. Check-list of Ficus in Asia and Australasia with key to identification. Gard. Bull. Singapore 21: 1-186. Cunningham, D. D. 1888. On the phenomena of fertilization in Ficus roxburghii Wall. Ann. R. Bot. Gard. Calcutta 1 (Append.): 11-51. Drummond, A. J., and A. Rambaut. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7: 214. doi:10.1186/1471-2148-7-214. Drummond, A. J., A. Rambaut, B. Shapiro, and O. G. Pybus. 2005. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22: 1185-1192. Edwards, A. W. F., and L. L. Cavalli-Sforza. 1963. The reconstruction of evolution. Ann. Hum. Genet. 27: 105-106. Eldenas, P. K., and H. P. Linder. 2000. Congruence and complementarity of morphological and trnL-trnF sequence data and the phylogeny of the African Restionaceae. Syst. Bot. 25: 692-707. Eum, S. M., T. Yukawa, Y. Luo, J. V. Freudenstein, and N. S. Lee. 2008. Reappraisal of Diplolabellum coreanum (Orchidaceae) as inferred from molecular data. J. Plant Biol. 51: 20-24. Excoffier, L. 2004. Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol. Ecol. 13: 853-864. Felsenstein, J. 1981. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution 35: 1229-1242. Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates, Inc., Sunderland, MA, USA. 664 pp. Feng, Y., S. H. Oh, and P. S. Manos. 2005. Phylogeny and historical biogeography of the genus Platanus as inferred from nuclear and chloroplast DNA. Syst. Bot. 30: 786-799. Filatov, D. A. 2002. ProSeq: A software for preparation and evolutionary analysis of DNA sequence data sets. Mol. Ecol. Notes 2: 621-624. Galil, J., and D. Eisikowich. 1968. Flowering cycles and fruit types of Ficus sycomorus in Israel. New Phytol. 67: 745-758. Galil, J. 1973. Pollination in dioecious figs: pollination of Ficus fistulosa by Ceratosolen hewitti. Gard. Bull. Singapore 26: 303-311. Galil, J. 1977. Fig biology. Endeavour. 1: 52-56. Galil, J., and D. Neeman. 1977. Pollen transfer and pollination in the common fig (Ficus carica L.). New Phytol. 79: 163-171. Guindon, S., and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696-704. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98. Hamilton, W. D. 1967. Extraordinary sex ratios. Science 156: 477-488. Harpending, H. C. 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum. Biol. 66: 591-600. Hecker, K. H., and K. H. Roux. 1996. High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR. Biol.Techniques 20: 478-485. Herre, E. A. 1985. Sex ratio adjustment in fig wasps. Science 228: 896-898. Herre, E. A. 1993. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science 259: 1442-1445. Hill, D. S. 1967. Fig-wasps (Chalcidoidea) of Hong Kong i. Agaonidae. Zool. Verh. Leiden 89: 1-55. Howarth, D. G. , and D. A. Baum . 2002. Phylogenetic utility of a nuclear intron from nitrate reductase for the study of closely related plant species. Mol. Phylogenet. Evol. 23: 525-528. Howarth, D. G., and D. A. Baum. 2005. Genealogical evidence of homoploid hybrid speciation in an adaptive radiation of Scaevola (Goodeniaceae) in the Hawaiian Islands. Evolution 59: 948-961. Huelsenbeck, J. P., and F. Ronquist. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755. Jousselin, E., J. Y. Rasplus, and F. Kjellberg. 2003. Convergence and coevolution in a mutualism: evidence from a molecular phylogeny of Ficus. Evolution 57: 1255-1269. Kajita, T. , K. Kamiya , K. Nakamura , H. Tachida , R. Wickneswari , Y. Tsumura , H. Yoshimaru , and T. Yamazaki . 1998. Molecular phylogeny of Dipterocarpaceae in Southeast Asia based on nucleotide sequences of matK, trnL intron, and trnL-trnF intergenic spacer region in chloroplast DNA. Mol. Phylogenet. Evol. 10: 202-209. Kiester, A. R., R. Lande, and D. W. Schemske. 1984. Models of coevolution and speciation in plants and their pollinators. Am. Nat. 124: 220-243. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. Kuijpers, A., H. Heinrich, and M. Moros. 2005. Climatic warming: a trigger for glacial iceberg surges (‘Heinrich events’) in the North Atlantic? GEUS Bull. 7: 53-56. Lin, R. C., C. K. Yeung, and S. H. Li. 2008. Drastic post-LGM expansion and lack of historical genetic structure of a subtropical fig-pollinating wasp (Ceratosolen sp. 1) of Ficus septica in Taiwan. Mol. Ecol. 17: 5008-5022. Machado, C. A., E. Jousselin, F. Kjellberg, S. G. Compton, and E. A. Herre. 2001. Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps. Proc. Biol. Sci. 268: 685-694. Makino, T. 1904. Observation on the flora of Japan. Bot. Mag. 19: 151-152. Murray, M. G. 1985. Figs (Ficus spp.) and fig wasps (Chalcidoidea, Agaonidae): Hypotheses for an ancient symbiosis. Biol. J. Linn. Soc. 26: 69-81. Navarro, A., and N. H. Barton. 2003. Accumulating postzygotic isolation genes in parapatry: a new twist on chromosomal speciation. Evolution 57: 447-459. Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York. Nylander, J. A. A. 2004. MrModeltest v2. Program distributed by the author. Evolution Biology Centre, Uppsala University, Uppsala, Sweden. Patino, S., E. A. Herre, and M.T. Tyree. 1994. Physiological determinants of Ficus fruit temperature and implications for survival of pollinator wasp species: comparative physiology through an energy budget approach. Oecologia 100: 13-20. Ramirez, W. B. 1978. Evolution of mechanisms to carry pollen in Agaonidae (Hymenoptera Chalcidoidea). Tijdschr. Entomol. 121: 279-293. Ramirez, W. B. 1980. Evolution of the monoecious and dioecious habit in Ficus (Moraceae). Brenesia 18: 207-215. Ray, N., M. Currat, and L. Excoffier. 2003. Intra-deme molecular diversity in spatially expanding populations. Mol. Biol. Evol. 20: 76-86. Rozas, J., J. C. Sanchez-DelBarrio, X. Messeguer, and R. Rozas. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496-2497. Ruf, S., D. Karcher, and R. Bock. 2007. Determining the transgene containment level provided by chloroplast transformation. Proc. Natl. Acad. Sci. U.S.A. 104: 6998-7002. Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. Simon, C., F. Frati, A. Beckenbach, B. Crespi, H. Liu, and P. Flook. 1994. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87: 651-701. Stegemann, S., S. Hartmann, S. Ruf, and R. Bock. 2003. High-frequency gene transfer from the chloroplast genome to the nucleus. Proc. Natl. Acad. Sci. U.S.A. 100: 8828-8833. Swofford, D. L. 2002. PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0b10*. Sinauer Associates, Sunderland, MA. Taberlet, P., L. Gielly, G. Pautou, and J. Bouvet. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17: 1105-1109. Tamura, K. 1992. The rate and pattern of nucleotide substitution in Drosophila mitochondrial DNA. Mol. Biol. Evol. 9: 814-825. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. van Ham, R. C., H. Hart, T. H. Mes, and J. M. Sandbrink . 1994. Molecular evolution of noncoding regions of the chloroplast genome in Crassulaceae and related species. Curr. Genet. 25: 558-566. van Noort, S., and S. G. Compton. 1996. Convergent evolution of agaonine and sycoecine (Agaonidae, Chalcidoidea) head shape in response to the constraints of host fig morphology. J. Biogeogr. 23: 415-424. van Noort, S., A. B. Ware, and S. G. Compton. 1989. Pollinator-specific volatile attractants released from the figs of Ficus burttdavyi. South Afric. J. Sci. 85: 323-324. Verkerke, W. 1989. Structure and function of the fig. Experientia 45: 612-622. Ware, A. B., and S. G. Compton. 1992. Repeated evolution of elongate multiporous plate sensilla in female fig wasps (Hymenoptera: Agaonidae: Agaoninae). Proc. K. Ned. Akad. Wet. 95: 275-292. West, S. A., M. G. Murray, C. A. Machado, A. S. Griffin, and E. A. Herre. 2001. Testing Hamilton's rule with competition between relatives. Nature 409: 510-513. White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols. A Guide to Methods and Applications. pp. 315-322. Wiebes, J. T. 1977. A short history of fig wasps research. Gard. Bull. Singapore 29: 207-232 Wiebes, J. T. 1979. Co-evolution of figs and their insect pollinators. Annu. Rev. Ecol. Syst. 10: 1-12. Wiebes, J. T. 1993. Agaonidae (Hymenoptera, Chelcidoidea) and Ficus (Morceae): Fig wasp and their figs, X (Wiebesia). Proc. Kon. Ned. Akud. V. Wetensch. 96: 91-114. Wu, C. I. 2001. The genic view of the process of speciation. J. Evol. Biol. 14: 851-865. Yang, Z., and B. Rannala. 1997. Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo method. Mol. Biol. Evol. 14: 717-724. Zhang, D. X., and G. M. Hewitt. 1997. Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. Biochem. Syst. Ecol. 25: 99-120. Zhou, J., and A. Kleinhofs. 1996. Molecular evolution of nitrate reductase genes. J. Mol. Evol. 42: 432-442. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43717 | - |
dc.description.abstract | 榕屬植物 (Ficus spp.) 及其授粉榕小蜂間之共生關係是探討共演化的經典例子。榕屬植物倚賴榕果小蜂為其授粉,同時提供生長發育的營養及環境做為回報。兩者間的關係向來被認為具物種的專一性,並一起共演化。台灣原生種之榕屬植物:愛玉子 (Ficus pumila L. var. awkeotsang (Makino) Corner) 在分類上被歸為薜荔 (Ficus pumila L. var. pumila) 之變種,且這兩種榕屬植物的授粉小蜂被認為是同一種,Wiebesia pumilae (Hill)。但是薜荔與愛玉子的棲地環境、榕果果型、以及生化特性都不相同。因此推測它們在遺傳上,可能已經有分化的情形,而且榕屬植物的分化可能也一併造成其授粉榕小蜂的分歧。為探討榕屬植物以及其授粉榕小蜂的遺傳分化情形,本研究使用榕屬植物之3個DNA片段,葉綠體trnT-trnL基因區間 (IGS1)、核內基因nitrate reductase的第三個內含子 (NIA-i3) 以及核糖核酸內轉錄區II (ITS II)。授粉榕小蜂部分選取一個基因,粒線體cytochrome oxidase I (mtCOI) 基因,進行定序及分析。在榕屬植物間,NIA-i3以及ITS II沒有固定變異存在,而trnT-trnL基因區間的遺傳分化程度僅 0.3%。而授粉榕小蜂間之粒線體COI基因,存在著高達 11.9% 的遺傳分化。本研究的結果顯示,授粉榕小蜂在宿主植物分化之前已經有很大的遺傳分歧,並且暗示兩種榕屬植物可能處於種化的初期。在不同的授粉小蜂間,愛玉子授粉小蜂的雌性有效族群數約為薜荔授粉小蜂的 2.3 倍。由Bayesian skyline plot與mismatch distribution的結果顯示,前者在最近的冰河期歷經了族群擴張。親緣地理的分析結果發現,採自離島與高雄的薜荔授粉小蜂與台灣其他地區的授粉小蜂有明顯的區隔。在與外群比較後發現,薜荔之授粉榕小蜂與日本珍珠蓮之授粉榕小蜂Wiebesia callida之關係非常接近,暗示了宿主轉移的可能性,但其真正的機制仍待進一步研究。 | zh_TW |
dc.description.abstract | The obligate mutualism between pollinating fig wasps in the family Agaonidae (Hymenoptera: Chalcidoidea) and Ficus species (Moraceae) is often regarded as a classic example of co-evolution. Each fig species is generally pollinated by an unique species of fig wasps. Figs depend on its own specific species of wasp for pollination and the larvae of these wasps develop in their specific host. This relationship between figs and their pollinators is considered to be species-specific and may lead to co-speciation. The endemic jelly fig (Ficus pumila L. var. awkeotsang (Makino) Corner; awkeotsang) is a variety of creeping fig (F. pumila L. var. pumila; pumila) and both of them are thought to share a common pollinator wasp, Wiebesia pumilae (Hill). Since jelly and creeping figs are different in their habitats, forms of figs, and biochemical component of figs, it is reasonable to suggest the existence of genetic differentiation in between. Moreover, the differences between host figs may also have promoted genetic differentiation between their pollinators. According to our hypothesis, three DNA segments from figs, including chloroplast trnT-trnL intergenic spacer (IGS1), third intron of nitrate reductase (NIA-i3), and ribosomal intergenic transcript spacer II (ITS II), and one gene from wasps, mitochondrial cytochrome oxidase I (mtCOI), were sequenced and analyzed. Between two figs, no fixed difference was found in NIA-i3 and ITS II, and genetic distance recovered from IGS1 was only 0.3%. The nucleus gene flow between two fig populations is evident. In contrast, genetic distance derived from mtCOI gene was 11.9% between two pollinators. These results insinuate that the pollinator fig wasps may have been differentiated before the divergence of their host, and different varieties of F. pumila may be in the early stage of speciation. Within different pollinators, the long-term female effective population size of awkeotsang pollinator is estimated to be 2.3 times larger than that of pumila pollinator. Results derived from Bayesian skyline plot and mismatch distribution suggest the former have underwent population expansion during the last glacial epoch. Phylogeographic analysis indicates that populations of pumila pollinator can be divided into two groups, samples from Kaohsiung and off-shore islands are distinct from samples from the rest of Taiwan Island. Comparing with the outgroups, the indistinguishable relationships between pumila pollinator and the pollinator of F. sarmentosa, Wiebesia callida, was observed, implying the possibility of recent host transfer. The detailed mechanism may need further investigation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:26:44Z (GMT). No. of bitstreams: 1 ntu-98-R96632010-1.pdf: 865890 bytes, checksum: 4fca08012a70d8aea137d9e4f576c66b (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 目錄 vi 表次 viii 圖次 ix 壹、緒言 1 貳、材料與方法 8 一、授粉榕小蜂部分 8 二、榕屬植物部分 15 參、結果. 22 一、授粉榕小蜂部分 22 二、榕屬植物部分 38 肆、討論 50 一、薜荔及愛玉子之分類地位 50 二、愛玉子及薜荔授粉榕小蜂 51 三、薜荔與愛玉子及其授粉榕小蜂間之關係 53 伍、參考文獻 54 陸、附錄 62 附錄一、小蜂總體DNA萃取 62 附錄二、植物總體DNA萃取 63 附錄三、聚合酶連鎖反應核酸序列增幅法 64 附錄四、膠體DNA純化 65 附錄五、LB-ampicilin固體培養基製作 66 附錄六、載體接合反應 67 附錄七、轉型反應 68 | |
dc.language.iso | zh-TW | |
dc.title | 薜荔和愛玉子及其授粉小蜂之遺傳分化 | zh_TW |
dc.title | Genetic differentiation between Ficus pumila var. pumila and Ficus pumila var. awkeotsang and their pollinators | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 王弘毅(Hurng-Yi Wang) | |
dc.contributor.oralexamcommittee | 周蓮香(Lien-Siang Chou),李壽先(Shou-Hsien Li),曾喜育(Hsy-Yu Tzeng) | |
dc.subject.keyword | 細胞色素氧化酶,次單位元一,NIA-i3,trnT-trnL 基因區間,共演化,榕果小蜂,分子演化,族群分化, | zh_TW |
dc.subject.keyword | COI,NIA-i3,trnT-trnL intergenic spacer,co-evolution,fig wasp,molecular evolution, population differentiation, | en |
dc.relation.page | 68 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-17 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
顯示於系所單位: | 昆蟲學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 845.6 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。