Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43709
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟(Jaw-Lin Wang)
dc.contributor.authorTe-Chun Liuen
dc.contributor.author劉得鈞zh_TW
dc.date.accessioned2021-06-15T02:26:33Z-
dc.date.available2014-08-18
dc.date.copyright2011-08-18
dc.date.issued2011
dc.date.submitted2011-08-17
dc.identifier.citation1. Barbir A, Michalek AJ, Abbott RD, et al. Effects of enzymatic digestion on compressive properties of rat intervertebral discs. J Biomech 2010;43:1067-73.
2. Battie MC, Videman T, Parent E. Lumbar disc degeneration: epidemiology and genetic influences. Spine (Phila Pa 1976) 2004;29:2679-90.
3. Bibby SR, Fairbank JC, Urban MR, et al. Cell viability in scoliotic discs in relation to disc deformity and nutrient levels. Spine (Phila Pa 1976) 2002;27:2220-8; discussion 7-8.
4. Brodin H. Paths of nutrition in articular cartilage and intervertebral discs. Acta Orthop Scand 1955;24:177-83.
5. Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine (Phila Pa 1976) 1995;20:1307-14.
6. Chiu EJ, Newitt DC, Segal MR, et al. Magnetic resonance imaging measurement of relaxation and water diffusion in the human lumbar intervertebral disc under compression in vitro. Spine (Phila Pa 1976) 2001;26:E437-44.
7. Chuang SY, Odono RM, Hedman TP. Effects of exogenous crosslinking on in vitro tensile and compressive moduli of lumbar intervertebral discs. Clin Biomech (Bristol, Avon) 2007;22:14-20.
8. Drew SC, Silva P, Crozier S, et al. A diffusion and T2 relaxation MRI study of the ovine lumbar intervertebral disc under compression in vitro. Phys Med Biol 2004;49:3585-92.
9. Gordon SL, Weinstein JN. A review of basic science issues in low back pain. Phys Med Rehabil Clin N Am 1998;9:323-42, vii.
10. Gu WY, Mao XG, Foster RJ, et al. The anisotropic hydraulic permeability of human lumbar anulus fibrosus. Influence of age, degeneration, direction, and water content. Spine (Phila Pa 1976) 1999;24:2449-55.
11. Hassett G, Hart DJ, Manek NJ, et al. Risk factors for progression of lumbar spine disc degeneration: the Chingford Study. Arthritis Rheum 2003;48:3112-7.
12. Hedman TP, Saito H, Vo C, et al. Exogenous cross-linking increases the stability of spinal motion segments. Spine (Phila Pa 1976) 2006;31:E480-5.
13. Holm S, Nachemson A. Nutritional changes in the canine intervertebral disc after spinal fusion. Clin Orthop Relat Res 1982:243-58.
14. Horner HA, Urban JP. 2001 Volvo Award Winner in Basic Science Studies: Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine (Phila Pa 1976) 2001;26:2543-9.
15. Hoy D, Brooks P, Blyth F, et al. The Epidemiology of low back pain. Best Pract Res Clin Rheumatol 2010;24:769-81.
16. Iwahashi M, Matsuzaki H, Tokuhashi Y, et al. Mechanism of intervertebral disc degeneration caused by nicotine in rabbits to explicate intervertebral disc disorders caused by smoking. Spine (Phila Pa 1976) 2002;27:1396-401.
17. Johnstone B, Urban JP, Roberts S, et al. The fluid content of the human intervertebral disc. Comparison between fluid content and swelling pressure profiles of discs removed at surgery and those taken postmortem. Spine (Phila Pa 1976) 1992;17:412-6.
18. Katz MM, Hargens AR, Garfin SR. Intervertebral disc nutrition. Diffusion versus convection. Clin Orthop Relat Res 1986:243-5.
19. Knecht S, Luechinger R, Boesiger P, et al. MRI-based inverse finite element approach for the mechanical assessment of patellar articular cartilage from static compression test. Biomed Tech (Berl) 2008;53:285-91.
20. Leddy HA, Guilak F. Site-specific molecular diffusion in articular cartilage measured using fluorescence recovery after photobleaching. Ann Biomed Eng 2003;31:753-60.
21. Leddy HA, Haider MA, Guilak F. Diffusional anisotropy in collagenous tissues: fluorescence imaging of continuous point photobleaching. Biophys J 2006;91:311-6.
22. Lee JI, Sato M, Ushida K, et al. Measurement of diffusion in articular cartilage using fluorescence correlation spectroscopy. BMC Biotechnol 2011;11:19.
23. Maroudas A. Biophysical chemistry of cartilaginous tissues with special reference to solute and fluid transport. Biorheology 1975;12:233-48.
24. Matsui H, Kanamori M, Ishihara H, et al. Familial predisposition for lumbar degenerative disc disease. A case-control study. Spine (Phila Pa 1976) 1998;23:1029-34.
25. Nachemson A, Lewin T, Maroudas A, et al. In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop Scand 1970;41:589-607.
26. O'Hare D, Winlove CP, Parker KH. Electrochemical method for direct measurement of oxygen concentration and diffusivity in the intervertebral disc: electrochemical characterization and tissue-sensor interactions. J Biomed Eng 1991;13:304-12.
27. Ogata K, Whiteside LA. 1980 Volvo award winner in basic science. Nutritional pathways of the intervertebral disc. An experimental study using hydrogen washout technique. Spine (Phila Pa 1976) 1981;6:211-6.
28. Panagiotacopulos ND, Pope MH, Krag MH, et al. Water content in human intervertebral discs. Part I. Measurement by magnetic resonance imaging. Spine (Phila Pa 1976) 1987;12:912-7.
29. Quinn TM, Morel V, Meister JJ. Static compression of articular cartilage can reduce solute diffusivity and partitioning: implications for the chondrocyte biological response. J Biomech 2001;34:1463-9.
30. Rajasekaran S, Babu JN, Arun R, et al. ISSLS prize winner: A study of diffusion in human lumbar discs: a serial magnetic resonance imaging study documenting the influence of the endplate on diffusion in normal and degenerate discs. Spine (Phila Pa 1976) 2004;29:2654-67.
31. Rajasekaran S, Naresh-Babu J, Murugan S. Review of postcontrast MRI studies on diffusion of human lumbar discs. J Magn Reson Imaging 2007;25:410-8.
32. Rauck RL, Gargiulo CA, Ruoff GE, et al. Chronic low back pain: new perspectives and treatment guidelines for primary care: Part I. Manag Care Interface 1998;11:72-7, 82.
33. Robinson D, Mirovsky Y, Halperin N, et al. Changes in proteoglycans of intervertebral disc in diabetic patients. A possible cause of increased back pain. Spine (Phila Pa 1976) 1998;23:849-55; discussion 56.
34. Roughley PJ. Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine (Phila Pa 1976) 2004;29:2691-9.
35. Roughley PJ, Alini M, Antoniou J. The role of proteoglycans in aging, degeneration and repair of the intervertebral disc. Biochem Soc Trans 2002;30:869-74.
36. Sambrook PN, MacGregor AJ, Spector TD. Genetic influences on cervical and lumbar disc degeneration: a magnetic resonance imaging study in twins. Arthritis Rheum 1999;42:366-72.
37. Schoenfeld AJ. Low back pain in the uniformed service member: approach to surgical treatment based on a review of the literature. Mil Med 2011;176:544-51.
38. Sung HW, Chang WH, Ma CY, et al. Crosslinking of biological tissues using genipin and/or carbodiimide. J Biomed Mater Res A 2003;64:427-38.
39. Swartz MA, Fleury ME. Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng 2007;9:229-56.
40. Travascio F, Gu WY. Anisotropic diffusive transport in annulus fibrosus: experimental determination of the diffusion tensor by FRAP technique. Ann Biomed Eng 2007;35:1739-48.
41. Travascio F, Zhao W, Gu WY. Characterization of anisotropic diffusion tensor of solute in tissue by video-FRAP imaging technique. Ann Biomed Eng 2009;37:813-23.
42. Urban JP. The role of the physicochemical environment in determining disc cell behaviour. Biochem Soc Trans 2002;30:858-64.
43. Urban JP, Holm S, Maroudas A. Diffusion of small solutes into the intervertebral disc: as in vivo study. Biorheology 1978;15:203-21.
44. Urban JP, Holm S, Maroudas A, et al. Nutrition of the intervertebral disc: effect of fluid flow on solute transport. Clin Orthop Relat Res 1982:296-302.
45. Urban JPG, Roberts S, Ralphs JR. The Nucleus of the Intervertebral Disc from Development to Degeneration. American Zoologist 2000;40:53-61.
46. van der Werf M, Lezuo P, Maissen O, et al. Inhibition of vertebral endplate perfusion results in decreased intervertebral disc intranuclear diffusive transport. J Anat 2007;211:769-74.
47. Walter R, Miguez PA, Arnold RR, et al. Effects of natural cross-linkers on the stability of dentin collagen and the inhibition of root caries in vitro. Caries Res 2008;42:263-8.
48. Yao H, Gu WY. Physical signals and solute transport in human intervertebral disc during compressive stress relaxation: 3D finite element analysis. Biorheology 2006;43:323-35.
49. Yerramalli CS, Chou AI, Miller GJ, et al. The effect of nucleus pulposus crosslinking and glycosaminoglycan degradation on disc mechanical function. Biomech Model Mechanobiol 2007;6:13-20.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43709-
dc.description.abstract背景介紹:擴散作用是椎間盤內部養分與廢物代謝的主要方式之一,因此擴散作用與受傷椎間盤的自我修復能力有著重要的關聯性,而這些養分和廢物的擴散能力亦會受到椎間盤的退化程度與重組結構影響,但是目前對於這方面的研究尚不明朗。在退化性的椎間盤模型方面可注射生化藥劑進行模擬,例如使用胰蛋白酶改變椎間盤內的生物分子組成。另外,近年來許多藥劑被使用於恢復椎間盤的組成與功能,其中胜肽交聯劑的梔子素已被證實可使肽結構間彼此產生交聯反應,並且恢復椎間盤的力學性質。因此研究變性及交聯後的椎間環與椎間核的擴散效能,將有助於了解胜肽交聯劑在椎間盤再生治療方面的粒子傳輸效能。
研究目的:本研究的目的在於使用螢光影像分析技術評估經由變性及交聯後的椎間環與椎間核之粒子擴散效能變化。
材料與方法:本實驗所使用的椎間環與椎間核皆取自六個月大的豬隻腰椎。在實驗上,會使用自製手術刀將椎間環切成立方體形狀,另一方面則使用1c.c.的針筒來收集椎間核,每次實驗會將椎間核(約0.09克)擠入自製夾具中。試樣上,使用72組環向椎間環、72組徑向椎間環與72組椎間核,試樣總數為216組。而這三種形式的試樣又將進一步區分為三種狀態,分別為健康組,降解組與交聯組。為了模擬退化的試樣,將胰蛋白酶(0.25%, 0.5c.c.)注入椎間盤中並且於4℃與室溫環境下各反應12小時,接著將椎間盤剖開取出椎間核。椎間環則是於取下後,浸泡於胰蛋白酶溶液中並且於4℃與室溫環境下各反應12小時,接下來椎間環的準備步驟則是與健康組相同。交聯組方面,所有的試樣將先經由降解組的流程反應,接著將梔子素(0.33%,0.5c.c.)注入椎間盤中於室溫下反應24小時之後剖開取出椎間核,椎間環則是浸泡於梔子素中於室溫下反應24小時。本實驗使用三種不同分子量的螢光染劑進行測試,分別為螢光素鈉(FS,MW=376 Da)、四甲基異硫氰酸羅丹明-多醣共軛物(TRITC-Dextran,MW=4400 Da)、異硫氰酸螢光素-多醣共軛物(FITC-Dextran,MW=40000 Da)。試樣將被置於兩端設有水槽的夾具中,右側的上游槽將注入螢光染劑(100μL,100 μM),左側的下游槽則注入相同體積的生理食鹽水。實驗中會使用自製的螢光攝影系統來測試60分鐘內每隔5分鐘上、下游槽螢光訊號的變化,再經由Fick’s 第一定律便可計算出擴散係數。

實驗結果:小分子量染劑(FS)的擴散係數都比中分子量(TRITC)與大分子量的染劑(FITC)來得高。環向椎間環的擴散效能比徑向椎間環與椎間核來得好。健康組的椎間環與椎間核之擴散係數都比降解組與交聯組的擴散係數來的高,然而降解組與交聯組之間的擴散係數並無顯著性差異。
結論:(1)染劑的分子量大小與擴散係數成反比關係,即分子量越大的染劑,其擴散係數將越小。(2)由環向椎間環的擴散係數大於徑向椎間環可知試樣的方向性會影響其擴散效能。(3)經過胰蛋白酶降解與梔子素交聯的試樣,兩者的擴散性會比健康組來得低。
zh_TW
dc.description.abstractBackground:Diffusion is one of the nutrient and waste particles transportation mechanisms within intervertebral discs, and thus could be crucial for disc self-recovery from destructive injury. Disc diffusion capacity could be affected by the degeneration change and structural remodeling. However, the underlying mechanism is not well investigated yet. Disc degeneration can be modeled by introducing the biochemical stresses, e.g., trypsin, which may denature the biomolecular compositions within disc. Recently, many reagents have been studied in recovering the disc function. The genipin, a peptide crosslinker, is well proved to restore disc mechanical properties by forming crosslinking between the peptide structures. Determining the diffusion capacity of anulus fibrosus and nucleus fibrosus tissue after denaturation and crosslinking will help to verify the feasibility of peptide crosslinkers for disc regeneration therapy from the aspect of particle transportation function.
Purpose:The purpose of this study is to evaluate the diffusion capacity of anulus fibrosus (AF) and nucleus pulposus (NP) after denaturation and crosslinking with fluorescent image analysis techniques
Material and method:Specimens of AF and NP were harvested from healthy 6-month-old juvenile pigs. The AF was dissected by a home-made scalpel into a cubic shape and NP were store in a inject syringe (1cc.), and 0.09 g of NP was measured and squeezed into the home-made cubic slots. Seventy-two AF along the circumferential direction, Seventy-two AF along the radial direction, and Seventy-two NP (total two hundred and sixteen groups) specimens were prepared. The three types of specimens were further assigned into 3 groups; i.e., intact group, denatured group and crosslinked group. To simulate the denaturation, trypsin (0.25%, 0.5cc.) was injected into the disc and stored at 4℃ for 12 hours and at room temperature for 12 hours, and then the NP was obtained by dissecting the disc. The AF were first dissected and immerged in trypsin solution at 4℃ for 12 hours and at room temperature for 12 hours, then the AF were prepared using the same procedure as intact group. For the crosslinked group, all the specimen were prepared first using the denatured group protocol, and then the specimen were treated with genipin for 24 hours at room-temperature. The Fluorescein Sodium Salt (FS), Tetramethylrhodamine Isothiocyanate-Dextran (TRITC-Dextran) and Fluorescein Isothiocyanate-dextran (FITC-Dextran) were used in this study. Specimens were set in a channel with two sink at both end. The source sink at right hand side was filled with 100μL fluorescence dye at 100 μM intensity and the drain sink at left hand side was filled with same amount of saline. An in-house fluorescent photographic system was used to find the signal changes of both source and drain sink every 5 minutes for 60 minutes. The diffusion coefficient can be calculated from these images using Fick’s first law.
Result:Smaller molecule (FS) always has higher diffusion coefficient than the medium (TRITC) and large (FITC) molecule. The diffusion coefficient of AF along the circumferential direction is higher than the AF along radial direction and NP. The diffusion coefficient of intact AF and NP is higher than the coefficient of denatured and crosslinked one. However, the difference between the denatured and crosslinked disc is not significant.
Conclusion:(1) Increasing the particle size lead to decrease the diffusion coefficient. (2) Higher diffusion coefficient through circumferential specimen in comparison with radial one shows the effect of direction. (3) The diffusion coefficient decreased significantly after denaturation and crosslinking.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:26:33Z (GMT). No. of bitstreams: 1
ntu-100-R98548041-1.pdf: 2925319 bytes, checksum: 539296ef96e5e5475156d2f5c0c33cce (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents致謝 ii
中文摘要 iv
Abstract vi
圖目錄 xii
表目錄 xiv
第一章 前言 1
1.1脊椎的基本構造 1
1.2椎間盤的構造 2
1.3椎間盤退化 3
1.4研究動機與目的 3
第二章 材料與方法 5
2.1實驗簡介 5
2.2實驗儀器 5
2.2.1螢光攝影系統(Fluorescent Photographic System) 5
2.2.2試樣夾具 8
2.3實驗階段 8
2.3.1試樣準備 8
2.3.2胰蛋白酵素(Trypsin)介紹 9
2.3.3梔子素(Genipin)介紹 10
2.3.4螢光染劑介紹 10
2.3.5藥劑準備 12
2.3.6實驗流程 13
2.3.7螢光染劑校正 15
2.3.8影像分析流程 16
2.3.9自體螢光(Autofluorescence) 17
2.4擴散理論 17
2.5水含量(Water Content)測試 19
第三章 實驗結果 21
3.1擴散係數(Apparent Diffusion Coefficient) 21
3.1.1 健康組擴散係數 21
3.1.2 降解組擴散係數 24
3.1.3交聯組擴散係數 28
3.2擴散影像 31
3.2.1健康組擴散影像 31
3.2.2各組擴散影像 34
3.3水含量(Water Content) 35
第四章 討論 36
4.1不同分子量擴散係數的比較 36
4.2椎間核、徑向椎間環與環向椎間環擴散係數的比較 37
4.3 綜合比較 38
4.3.1健康組與降解組擴散係數的比較 40
4.3.2健康組與交聯組擴散係數的比較 40
4.3.3降解組與交聯組擴散係數的比較 41
第五章 結論與未來展望 42
5.1結論 42
5.2未來展望 42
第六章 參考文獻 43
dc.language.isozh-TW
dc.subject螢光zh_TW
dc.subject擴散zh_TW
dc.subject椎間盤退化zh_TW
dc.subject胰蛋白&#37238zh_TW
dc.subject降解zh_TW
dc.subject梔子素zh_TW
dc.subject交聯zh_TW
dc.subjectDenatureen
dc.subjectCrosslinken
dc.subjectGenipinen
dc.subjectDiffusionen
dc.subjectFluorescenten
dc.subjectDegeneration of Intervertebral Discen
dc.subjectTrypsinen
dc.title椎間核與椎間環間之粒子大小對擴散效能的影響zh_TW
dc.titleEffect of Particle Size in Diffusion Efficiency within Nucleus Pulposus and Anulus Fibrosusen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee趙本秀(Pen-Hsiu Chao),陳文斌(Weng-Pin Chen),蕭仲凱(Jong-Kai Hsiao)
dc.subject.keyword擴散,螢光,椎間盤退化,胰蛋白&#37238,降解,梔子素,交聯,zh_TW
dc.subject.keywordDiffusion,Fluorescent,Degeneration of Intervertebral Disc,Trypsin,Denature,Genipin,Crosslink,en
dc.relation.page48
dc.rights.note有償授權
dc.date.accepted2011-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved