Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43698
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李琳山(Lin-Shan Lee)
dc.contributor.authorChia-Ming Yangen
dc.contributor.author楊家銘zh_TW
dc.date.accessioned2021-06-15T02:26:16Z-
dc.date.available2011-08-18
dc.date.copyright2011-08-18
dc.date.issued2011
dc.date.submitted2011-08-16
dc.identifier.citation[1] Vannevar Bush, “As we may think,” in The Atlantic Monthly, 1945.
[2] Sparck, G. J. F. Jones, J. T. Foote, and S. J. Young, “Experiments in spoken document
retrieval,” Information Processing & Management, vol. 32, no. 4, pp. 399–417,
July 1996.
[3] J. Garofolo, G. Auzanne, and E. Voorhees, “The TREC Spoken Document Retrieval
Track: A Success Story,” 2000.
[4] NISO National Information Standards Organization, UnderstandingMetadata,
NISO press, 2004.
[5] Berlin. Chen, Jen-Wei. Kuo, Yao-Min. Huang, and Hsin min. Wang, “Statistical
chinese spoken document retrieval using latent topical information,” Interspeech,
2004.
[6] Amit. Singhal, “Modern information retrieval: A brief overview,” IEEE, 2004.
[7] van Rijsbergen Cornelis Joost., Information Retrieval, 2nd edition, Butterworths.,
1979.
[8] Gerard. Salton, Automatic Information Organization and Retrieval, McGraw Hill
Text, 1968.
[9] J. Xu, Y. Cao, H. Li, and Y. Huang, “Cost-sensitive learning of svm for ranking,”
Proc. ECML, 2006.
[10] S. E. Roberson and K. Sparck Jones, “Relevance weighting of search terms,” Journal
of American Society for Information Sciences, pp. 129–146, 1976.
[11] R. Nallapati, “Discriminant models for information retrieval,” SIGIR ’04: Proceeding
of the 27th annual international ACM SIGIR conference in Research and
development in information retrieval, 2004.
[12] H. Drucker, D. Wu, and V. N. Vapnik, “Support vector machines fpr spam categorization,”
IEEE Transactions on Neural Networks, 1999.
[13] Adam. Berger, “Statistical machine learning for information retrieval,” CMU Phd.
Thesis, 2001.
[14] R. Herbrich, T. Graepel, and K. Obermayer, “Large margin rank boundaries for
ordinal regression,” Advances in Large Margin Classifiers, 2000.
[15] Luc De Raedt and Stefan Wrobel, Eds., Learning to rank using gradient descent.
ACM, 2005.
[16] Yunbo Cao, Jun Xu, Tie-Yan Liu, Hang Li, Yalou Huang, and Hsiao-Wuen Hon,
“Adapting ranking svm to document retrieval,” in Proceedings of the 29th annual
ACM SIGIR conference, Seattle, Washington, USA, 2006, pp. 186–193, ACM.
[17] Christopher J. C. Burges, Robert Ragno, and Quoc V. Le, “Learning to Rank with
Nonsmooth Cost Functions,” in NIPS, Bernhard Sch‥olkopf, John C. Platt, Thomas
Hoffman, Bernhard Sch‥olkopf, John C. Platt, and Thomas Hoffman, Eds. 2006, pp.
193–200, MIT Press.
[18] Jun Xu and Hang Li, “AdaRank: a boosting algorithm for information retrieval,” in
Proceedings of the 30th annual international ACM SIGIR conference on Research
and development in information retrieval, New York, NY, USA, 2007, SIGIR ’07,
pp. 391–398, ACM.
[19] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten Joachims, “A support
vector method for optimizing average precision,” in Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in information
retrieval, New York, NY, USA, 2007, SIGIR ’07, pp. 271–278, ACM.
[20] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li, “Learning to rank:
from pairwise approach to listwise approach,” in ICML ’07: Proceedings of the
24th international conference on Machine learning, New York, NY, USA, 2007, pp.
129–136, ACM.
[21] Ciprian Chelba, “Spoken document retrieval and browsing,” Hopkins CLSP, 2007.
[22] L. Mangu, “Finding consensus in speech recognition: word error minimization and
other applications of confusion networks,” Computer Speech & Language, vol. 14,
no. 4, pp. 373–400, Oct. 2000.
[23] Ciprian Chelba and Alex Acero, “Position specific posterior lattices for indexing
speech,” in Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics, Stroudsburg, PA, USA, 2005, ACL ’05, pp. 443–450, Association
for Computational Linguistics.
[24] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in
speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, Feb.
1989.
[25] the Cambridge University Engineering Department (CUED), “Htk,”
http://htk.eng.cam.ac.uk/.
[26] SRI International, “Srilm,” http://www.speech.sri.com/projects/srilm/.
[27] Yi-CHeng. Pan, “One-pass and word-graph-based search algorithms for large vocabulary
continuous mandarin speech recognition,” Master Thesis in National Taiwan
University, 2002.
[28] Hung ling. Chang, “Spoken document retrieval based on position specific posterior
lattices adn latent semantic analysis,” Master Thesis in National Taiwan University,
2008.
[29] Chao hong. Mong, Hung yi. Lee, and Lin shan Lee, “Imporved lattice-based spoken
document retrieval by directly learning from hte evaluation measure,” ICASSP,
2009.
[30] Jun Xu, Tie Y. Liu, Min Lu, Hang Li, and Wei Y. Ma, “Directly optimizing evaluation
measures in learning to rank,” in SIGIR ’08: Proceedings of the 31st annual
international ACM SIGIR conference on Research and development in information
retrieval, New York, NY, USA, 2008, pp. 107–114, ACM.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43698-
dc.description.abstract語音文件檢索在資訊爆炸的多媒體時代日益重要。大部分的語音文件檢索的
技術包含兩大步驟, 一是自動語音辨識技術, 二是使用辨識後產生的索引資訊
進行檢索。第一個步驟面對的是可能的高辨識錯誤率, 會影響產生的語音文件
索引所攜帶資訊的正確性; 第二個步驟就是如何充分使用這些索引所帶的資訊
並將之發揮到極致。本論文所研究的主題方向屬於上述第二部份, 考慮如何將
中文語音中不同語言單位(例如:詞(Word)、字(Character)、音節(Syllable)、聲韻
母(Initial-Final)等...) 所產生的索引資訊, 透過排序學習(Learning to Rank)的方法
整合起來。
本論文共研究了兩種排序學習(Learning to Rank)的方法︰調適排序(AdaRank)及
針對平均準確率的支撐向量機(Support Vector Machine for Optimizing Mean Average
Precision, SVM-map)。
實驗結果顯示, 使用針對平均準確率的支撐向量機的結果是比較好的,
比起調適排序, 最佳的平均準確率均值進步是4.70%; 比起已知個別檢索效能
最佳(Oracle)的索引, 綜合查詢指令進步了8.67%, 其中辭典內查詢詞彙的部份
進步了6.30%, 而辭典外查詢詞彙效果最為明顯, 有約11.63%的直接進步。這
些實驗結果也驗證, 使用不同語言單位所產生的語音文件索引, 透過排序學
習找到適當的對應權重, 予以加成, 可以使得語音文件檢索的效能以及強健
性(Robustness)獲得更進一步的提昇。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-15T02:26:16Z (GMT). No. of bitstreams: 1
ntu-100-R98922038-1.pdf: 2422474 bytes, checksum: c915f2b6b1ce8e0012abd9e408bfafbe (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
一、導論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 本論文研究方向以及相關研究. . . . . . . . . . . . . . . . . . . . . . 2
1.3 本論文主要的研究方法及成果. . . . . . . . . . . . . . . . . . . . . . 5
1.4 本論文章節安排. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
二、背景知識. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 資訊檢索簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 匹配策略(Matching Strategy) . . . . . . . . . . . . . . . . . . . 7
2.1.2 學習能力. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 語音文件檢索介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 最佳序列(One-Best Sequence) . . . . . . . . . . . . . . . . . . 20
2.2.2 詞圖(Word Graph / Lattice) . . . . . . . . . . . . . . . . . . . . 21
2.2.3 混淆網路(Confusion Network) . . . . . . . . . . . . . . . . . . 23
2.2.4 位置特定事後機率詞圖(Position Specific Posterior Lattices) . . 26
2.3 檢索評估機制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 本章總結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
三、語音文件索引. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1 實驗架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.1 使用工具. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 辭典、聲學模型、語言模型. . . . . . . . . . . . . . . . . . . 32
3.1.3 實驗測試語料. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.4 查詢指令. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.5 檢索模式以及評估標準. . . . . . . . . . . . . . . . . . . . . . 34
3.2 初步實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 語音文件索引. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 語音文件索引組合. . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 產生索引使用的工具. . . . . . . . . . . . . . . . . . . . . . . 37
3.3 實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 個別語音文件索引檢索效能. . . . . . . . . . . . . . . . . . . 37
3.3.2 均勻(Uniform)權重組合效能. . . . . . . . . . . . . . . . . . . 39
3.4 本章總結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
四、機器學習方法改進. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1 實驗架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 廣義架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 調適排序(AdaRank) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.3 實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.4 權重分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 針對平均準確率的支撐向量機(Support Vector Machine for Optimizing
Mean Average Precision, SVM-map) . . . . . . . . . . . . . . . . . . . . 51
4.4.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.2 找出最佳參數測試集(Development Set) . . . . . . . . . . . . . 53
4.4.3 實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.4 不同索引類型組合比較. . . . . . . . . . . . . . . . . . . . . . 55
4.4.5 權重分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 本章總結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
五、結論與展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1 總結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
dc.language.isozh-TW
dc.subject語音文件索引zh_TW
dc.subject語音zh_TW
dc.subject語音文件zh_TW
dc.subject語音文件檢索zh_TW
dc.subject機器學習zh_TW
dc.subjectSpoken Document Retrieval Indexingen
dc.subjectSpeechen
dc.subjectSpoken Document Retrievalen
dc.subjectMachine Learningen
dc.title用機器學習整合索引資訊之中文語音文件檢索zh_TW
dc.titleIntegrating Indexing Information by Machine Learning for Chinese Spoken Document Retrievalen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳信希(Hsin-Hsi Chen),洪一平(Yi-Ping Hung)
dc.subject.keyword語音,語音文件,語音文件檢索,機器學習,語音文件索引,zh_TW
dc.subject.keywordSpeech,Spoken Document Retrieval,Machine Learning,Spoken Document Retrieval Indexing,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2011-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved