Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43474
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃寶儀(Polly Huang)
dc.contributor.authorYu-Jung Chenen
dc.contributor.author陳宥融zh_TW
dc.date.accessioned2021-06-15T02:22:09Z-
dc.date.available2009-08-21
dc.date.copyright2009-08-21
dc.date.issued2009
dc.date.submitted2009-08-19
dc.identifier.citation[1] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low-cost outdoor localization for very small devices,” Personal Communications, IEEE, vol. 7, no. 5, pp. 28–34, 2000.
[2] H. Tian, H. Chengdu, B. Blum, et al., “Range-free Localization Schemes in Large Scale Sensor Networks,” Proceedings of the 9th Annual International Conference on Mobile Computing and Networking, MOBICOM, pp. 2003–81, 2003.
[3] A. Smailagic and D. Kogan, “Location sensing and privacy in a context-aware computing environment,” IEEE Wireless Communications, vol. 9, no. 5, pp. 10–17, 2002.
[4] P. Bahl and V. N. Padmanabhan, “RADAR: an in-building RF-based user location and tracking system”, in Proceedings of the 19th Annual Joint Conference of IEEE Computer and Communications Societies (INFOCOM ’00), vol. 2, pp. 775–784, Tel Aviv, Israel, March 2000.
[5] K. Lorincz and M. Welsh, “MoteTrack: A Robust, Decentralized Approach to RF-Based Location Tracking,” in Proceedings of the International Workshop on Location and Context-Awareness (LoCA), pp. 63-82, May 2005.
[6] Vinay Seshadri, Gergely V. Z’aruba, and Manfred Huber, “A Bayesian Sampling Approach to In-Door Localization of Wireless Devices Using Received Signal Strength Indication”, in PerCom, pages 75–84, 2005.
[7] Ville A. Kaseva, Mikko Kohvakka, Mauri Kuorilehto, Marko Hännikäinen, and Timo D. Hämäläinen, “A Wireless Sensor Network for RF-Based Indoor Localization,” EURASIP Journal on Advances in Signal Processing, vol. 2008, Article ID 731835, 27 pages, 2008. doi:10.1155/2008/731835
[8] Y. Song, J. Huang, D. Zhou, H. Zha, C.L. Giles, “IKNN: Informative k-nearest neighbor pattern classification”, in: 11th European Conference on Principles and Practice of Knowledge Discovery in Databases, Warsaw, Poland, 2007, pp. 248–264.
[9] Tsung-Han Lin, I-Hei Ng, Seng-Yong Lau, Kuang-Ming Chen, Polly Huang, “A Microscopic Examination of an RSSI-Signature-Based Indoor Localization System” The Fifth Workshop on Embedded Networked Sensors (HotEmNets 2008), Virginia, USA, Jun. 2008
[10] C. Wang and L. Xiao, 'Sensor localization under limited measurement capabilities,' IEEE Network, vol. 21, no. 3, pp. 16–23, May–June 2007.
[11] Vinay Seshadri, Gergely V Zaruba, and Manfred Huber: A Bayesian Sampling Approach to In-door Localization of Wireless Devices Using Received Signal Strength Indication, third IEEE Conference on Pervasive Computing and Communications (PerCom2005), pp. 75–84, (2005).
[12] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/non-Gaussian bayesian tracking,” IEEE Trans. Signal Processing, vol. 50, no. 2, pp. 174–188, Feb. 2002.
[13] D. Fox, J. Hightower, L. Liao, D. Schulz, G. Borriello, “Bayesian Filters for Location Estimation,” IEEE Pervasive Computing, vol. 2, no. 3, 2003.
[14] Hightower J., and Borriello G. Particle filters for location estimation in ubiquitous computing: A case study, in Proceedings of the Sixth International Conference on Ubiquitous Computing (Nottingham, U.K., Sept. 2004).
[15] Doucet, A.; Godsill, S.; Andrieu, C., 'On Sequential Monte Carlo Methods for Bayesian Filtering'. Statistics and Computing 10 (3): 197-208, (2000).
[16] Fox, D. 2002. “KLD-sampling: Adaptive particle filters”, Advances in Neural Information Processing Systems 14 (NIPS), MIT Press
[17] Dieter Fox, “Adapting the sample size in particle filters through KLD Sampling,” Int. J. Robotic Research, Vol. 22, pp. 985-1004, 2003
[18] A. Soto, “Self Adaptive Particle Filter”. Proceedings of International Join Conference on Artificial Intelligence (IJCAI 2005).
[19] Chih-Hao Chao, Chun-Yuan Chu and An-Yeu Wu, 'Location-Constrained Particle Filter for RSSI-Based Indoor Human Positioning and Tracking System,' in Proc. IEEE Workshop on Signal Processing Systems (SiPS-2008), DC, USA, pp. 73-76, Oct. 2008.
[20] Oliver Woodman , Robert Harle, Pedestrian localisation for indoor environments, Proceedings of the 10th international conference on Ubiquitous computing, September 21-24, 2008, Seoul, Korea
[21] Chuang-wen You, Yi-Chao Chen, Hao-hua Chu, Polly Huang, Ji-Rung Chiang, Seng-Yong Lau, “Sensor-Enhanced Mobility Prediction for Energy-Efficient Localization” IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON 2006), Reston VA, USA, Sept. 2006
[22] Kai Kunze and Paul Lukowicz, “Symbolic Object Localization through Active Sampling of Acceleration and Sound Signatures.”, Ubicomp, volume 4717of Lecture Notes in Computer Science, page163-180. Springer, (2007)
[23] Dean M. Karantonis, Michael R. Narayanan, Merryn Mathie, Nigel H. Lovell, and Branko G. Celler,” Implementation of a Real-Time Human Movement Classifier Using a Triaxial Accelerometer for Ambulatory Monitoring”, IEEE Trans. on Information Technology in Biomedicine, vol. 10, no. 1, Jan 2006
[24] J.Mathie, M., N.H. Lovell, A.C.F. Coster, and B.G. Celler, 'Determining Activity Using a Triaxial Accelerometer,', Proc. 2nd Joint EMBS-BMES Conf. Houston, TX, 2002.
[25] T. R. Burchfield and S. Venkatesan, 'Accelerometer-based human abnormal movement detection in wireless sensor networks,' in Proc. 1st ACM SIGMOBILE International Workshop on Systems and Networking Support for Healthcare and Assisted Living Environments (HealthNet'07), San Juan, Puerto Rico, June 2007, pp. 67~69.
[26] C. V. C. Bouten, K. T. M. Koekkoek, M. Verduin, R. Kodde, and J. D. Janssen, 'A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity,' IEEE Trans Biomed Eng, vol. 44, pp. 136-147, 1997.
[27] M. J. Mathie, A. C. F. Coster, N. H. Lovell, and B. G. Celler, “A pilot study of long term monitoring of human movements in the home using accelerometry,” J. Telemed. Telecare,vol. 10, pp. 144-151, 2004.
[28] Vincent, S., & Sidman, C. (2003), “Determining measurement error in digital pedometers.”, Measurement in Physical Education and Exercise Science, 7, 19-24.
[29] Ryan CG, Grant PM, Tigbe WW, Granat MH, “The validity and reliability of a novel activity monitor as a measure of walking.”, Br J Sports Med 2006; 40: 779–784.
[30] Kusy B., Ledeczi A., Koutsoukos X. 'Tracking Mobile Nodes Using RF Doppler Shifts'. ACM 5th Conference on Embedded Networked Sensor Systems (SenSys). Sydney, Australia, November 2007.
[31] Al-Obaidi S, Wall JC, Al-Yaqoub A, and Al-Ghanim M. “Basic gait parameters: A comparison of reference data for normal subjects 20 to 29 years of age from Kuwait and Scandinavia.” J Rehabil Res Dev 2003; 40(4):361-6.
[32] Beck RJ, Andriacchi TP, Kuo KN, Fremier RW, and Galante JO., 'Changes in the Gait Patterns of Growing Children.', J Bone Joint Surg, Vol.63A, pp1452-1457, 1981.
[33] Grieve DW, Gear RJ. “The relationships between length of stride, step frequency, time of swing and speed of walking for children and adults.” Ergonomics. 1966 Sep;9(5):379–399
[34] Jasuja OP, Harbhajan S, Anupama K. “Estimation of stature from stride length while walking fast”, Forensic science international1997; 86: 181-186
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43474-
dc.description.abstract高齡化社會成為了現今共同的問題,老年人照護的議題也隨著日益重要。養護中心提供了一個老年人安全監控以及集中照護的社群。雙連安養中心也是其中之一,集中照護超過350位長者。安養中心提供了各式的照護服務,不過,最重要的問題仍在老年人的安全。為了監控這麼大數量的長者,人力資源的成本必須花費相當大。
我們應用了以RSSI(接收信號強度)為基礎的定位系統來幫助安全監控的問題。定位的演算法是以KNN估測為基礎,加上粒子濾波器使得定位點輸出流暢化。但KNN估測很容易被無線信號強度的不穩定性所影響,這會使得定位精確度大幅下降。粒子濾波器便是用以解決這個問題。但戶外環境和室內環境是有很大的不同。 在室內環境裡,人的移動受限於有限的空間限制。所以在粒子濾波器中的移動模型,只要設定在一個平均的移動率即足以克服室內環境裡人的各種行動模式。然而,人們再是外會有各種不同的行動模式,譬如跑步、慢跑、走路等。在室外的環境中很容易會有比較極端的移動模式。若將行動模型設定在一個平均值上恐怕不足以解決粒子濾波器中追蹤的問題。這篇論文找出了一個利用附加加速度器的方法來收集加速度值,並且利用利用FFT(快速傅立葉轉換)來分析資料。藉此,我們可以找出監控目標的步頻,乘上目標的步距,即可線上估測目標速度。利用這個速度的估計值,粒子濾波器也可以同時調整定位估測所使用的行動模型,進而提升定位精確率。
zh_TW
dc.description.abstractNowadays, aging population becomes a common problem in the world. Elderly caring is a getting emphasized issue. Nursing center turns out to be a community for elderly people to centralize safety monitoring and caring. Suang-lien nursing center is one of them. There are over 350 members reside in it. The nursing center provides a wide variety of caring services for elderly people, hence the most important problem is their safety concern. In order to monitoring large amount of the elderly people, human resource on the caring is costly.
We apply our RSSI based localization system to help safety monitoring. Our localization algorithm is based on KNN estimation plus particle filter to smooth position output. The KNN estimation is easily affected by wireless signal instability, which devastates the location accuracy. Thus the particle filter is used to solve the issue. Outdoor environment is much different than indoor. In indoor environment, human moves within the restriction of limited space. Therefore, set the mobility model inside particle filter with average mobility is enough to solve human moving patterns in indoor environment. However, human might have various mobility patterns in outdoor, including running, jogging, walking…etc. Extreme mobility cases are easily to occur in outside environment. Set the mobility in average case is not enough to solve the tracking problem. Our work comes up an idea that we could use an extra added accelerometer and analyze acceleration values by FFT. After that, we could get the target stride frequency, and multiply with target’s stride length. The target speed can be approximated on-line. With the speed approximation, the particle filter can simultaneously adjust the mobility model for position estimation, therefore, enhance the location estimation accuracy.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:22:09Z (GMT). No. of bitstreams: 1
ntu-98-R96942034-1.pdf: 2157135 bytes, checksum: 2a5b453eca50ed422259c9b2911549ae (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 Introduction 1
Chapter 2 Related Work 3
Chapter 3 Problem Formulation 7
3.1 Recursive Bayesian Filtering 7
3.2 Monte Carlo Approximation 10
Chapter 4 Sensor-assisted Human Tracking 13
4.1 Accelerometer-based Step Counting 13
4.1.1 Observation 13
4.1.2 Inferring the Stride Frequency 14
4.2 Mobility Aware Particle Filtering 16
Chapter 5 Implementation 18
5.1 Hardware 18
5.2 Fix-Point FFT 19
5.2.1 FFT Implementation 19
5.2.2 Radix-2 DIT 256-Point FFT 21
5.2.3 Input Reorder 22
5.2.4 Sin/Cos LUT and Fix-Point Computation 23
5.3 Adapting Mobility Model 25
Chapter 6 Experiment 28
6.1 Testbed 28
6.2 Location System 29
6.3 Experiment Setting 29
Chapter 7 Evaluation 33
7.1 Stride Frequency Estimation Accuracy 33
7.2 Location Estimate Accuracy 36
7.3 Synthesized Test – Speed Variation 40
7.4 Fine-Grain Speed Bound Simulation 42
7.5 Stride Length Setting Effect 44
Chapter 8 Conclusion 48
REFERENCE 50
dc.language.isoen
dc.subject行動模型zh_TW
dc.subjectKNN估測zh_TW
dc.subject步頻zh_TW
dc.subjectFFT(快速傅立葉轉換)zh_TW
dc.subjectmobility modelen
dc.subjectFFTen
dc.subjectstride frequencyen
dc.subjectKNN estimationen
dc.title以粒子濾波器為基礎的定位系統中利用感測器輔助估測人類行動模型zh_TW
dc.titleSensor-Assisted Human Mobility Model Estimation for
Particle-Filter-Based Location System
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許健平(Jang-Ping Sheu),朱浩華(Hao-Hua Chu),曾煜棋(Yu-Chee Tseng),陳伶志(Ling-Jyh Chen)
dc.subject.keywordKNN估測,步頻,FFT(快速傅立葉轉換),行動模型,zh_TW
dc.subject.keywordKNN estimation,stride frequency,FFT,mobility model,en
dc.relation.page54
dc.rights.note有償授權
dc.date.accepted2009-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved