Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43470
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳君明(Jiun-Ming Chen)
dc.contributor.authorYou-Chen Wangen
dc.contributor.author王友呈zh_TW
dc.date.accessioned2021-06-15T02:22:06Z-
dc.date.available2010-08-21
dc.date.copyright2009-08-21
dc.date.issued2009
dc.date.submitted2009-08-19
dc.identifier.citation[1] V. S. Miller. Use of elliptic curves in cryptography. CRYPTO'85, vol. 218 of Lecture Notes in Computer Science, pp. 417-426.
[2] N. Koblitz, Elliptic curve cryptosystems, in mathematics of Computation 48, 1987, pp. 203-209
[3] E. W. Knudsen Elliptic Scalar Multiplication Using Point Halving, ASIACRYPT'99, LNCS, vol. 1716, pp. 135-149, 1999.
[4] P. Kocher, J. Jaffe, and B, Jun, Differential Power Analysis, Crypto 99 Proceedings, LNCS, Vol. 1666, 1999.
[5] J. A. Solinas, Effcient Arithmetic on Koblitz Curves, Designs, Codes and Cryptography, 19, 195-249, 2000.
[6] M. Joye, and S.M. Yen, The Montgomery powering ladder, vol.2523 of LNCS, pp. 291-302, Springer-Verlag, 2003.
[7] M. Ciet, M. Joye, K. Lauter, and P. L. Montgomery, Trading Inversions for Multiplications in Elliptic Curve Cryptography, Cryptology ePrint Archive, Report 2003/257, 2003.
[8] D. Hankerson, A. Menezes, and S. Vanstone, Guide to elliptic curve cryptography. Springer, 2004.
[9] B. Chevallier-Mames, M. Ciet, and M. Joye, Low-cost solutions for preventing simple side-channel analysis: side-channel atomicity, IEEE Transactions on Computers 53(6):760-768, 2004.
[10] M. Hedabou, P. Pinel, and L. Beneteau, A comb method to render ECC resistant against Side Channel Attacks, 2004.
[11] C. Doche, and L. Imbert, Extended Double-Base Number System with applications to Elliptic Curve Cryptography, LNCS, vol. 4329. pp. 335-348, 2006.
[12] M. Joye, Fault Attacks An Algorithmic Perspective, Summer school on cryptographic hardware, side-channel and fault attacks, 2006.
[13] H. Cohen, and G. Frey, Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman & Hall/CRC, 2006.
[14] C. Doche, and L. Habsieger, A Tree-Based Approach for Computing Double-Base Chains, ACISP 2008, LNCS, vol. 5107, pp. 433-446, 2008.
[15] V. Dimitrov, L. Imbert, and P. K. Mishra, The double-base number system and its application to elliptic curve cryptography, Mathematics of Computation, vol.77, no. 262, pp. 1075-1104, 2008.
[16] Gu Haihua, Gu Dawu, Liu Ya, Effcient Scalar Multiplication for Elliptic Curves over Binary Fields, Wuhan University Journal of Natural Sciences, vol. 13. pp.717-720, 2008.
[17] H. Bar-El, Introduction to Side Channel Attacks.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43470-
dc.description.abstractIn this paper, we review a number of methods to calculate the scalar multiplications, including the DBNS that has been gaining popularity in recent years. We review the side channel attacks that can break the cryptosystems by gaining some side channel information from the physical implementation of the cryptosystems. We propose a new algorithm with three schemes that apply the side channel atomicity using Lopez & Dahab coordinates to avoid the side channel attacks. The new algorithm we provided is about 30% faster than the algorithm previously used with Jacobian coordinates.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:22:06Z (GMT). No. of bitstreams: 1
ntu-98-R95221019-1.pdf: 621334 bytes, checksum: be3de43fca6ac31eef2a09294744f996 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsAcknowledgements ......................................... i
Abstract in Chinese ..................................... ii
Abstract in English .................................... iii
Contents ................................................ iv
List of Figures ......................................... vi
List of Tables .......................................... vi
1 Introduction ........................................... 1
1.1 EC-DH .............................................. 2
1.2 ECDSA .............................................. 3
1.3 ECIES .............................................. 4
2 Basic Scalar Multiplications on General Elliptic Curves 6
2.1 Binary Method ........................................ 6
2.2 Non-Adjacent Form (NAF) .............................. 7
2.3 Window Method ........................................ 8
2.4 Montgomery Method ................................... 11
2.5 Fixed-base Window Method ............................ 12
2.6 Fixed-base Comb Method .............................. 14
3 Other Special Scalar Multiplications .................. 18
3.1 Simultaneous Multiple Scalar Multiplication ......... 18
3.2 Joint Sparse Form (JSF) ............................. 19
3.3 Interleaving Method ................................. 20
3.4 -adic Non-adjacent Form (TNAF) on Koblitz Curve ... 21
3.5 Scalar Multiplications on Koblitz Curve ............. 27
3.6 Halving Method ...................................... 29
4 Double-Base Number System ............................. 36
4.1 DBNS Representation ................................. 36
4.2 Double-Base Chain ................................... 39
4.3 DBNS Scalar Multiplication .......................... 42
5 Side Channel Attacks .................................. 44
5.1 Power Analysis Attacks .............................. 44
5.1.1 Simple Power Analysis ............................. 44
5.1.2 Differential Power Analysis ....................... 46
5.2 Electromagnetic Analysis Attacks .................... 48
5.3 Fault Analysis Attacks .............................. 48
5.4 Timing Attacks ...................................... 50
5.5 Error Message Analysis .............................. 50
6 Strategies against Side Channel Attacks ............... 52
6.1 Side Channel Atomicity .............................. 52
6.2 Strategy for DBNS against Side Channel Attacks ...... 58
6.3 Analysis ............................................ 64
7 Conclusions ........................................... 67
Appendix ................................................ 68
References .............................................. 74
dc.language.isoen
dc.subject純量乘法zh_TW
dc.subject橢圓曲線密碼系統zh_TW
dc.subject旁道攻擊zh_TW
dc.subject雙基底數系zh_TW
dc.subject旁道原子性zh_TW
dc.subjectDBNSen
dc.subjectECCen
dc.subjectscalar multiplicationen
dc.subjectside channel attacksen
dc.subjectside channel atomicityen
dc.title橢圓曲線密碼系統純量乘法之雙基底數系中抵擋旁道攻擊之策略zh_TW
dc.titleStrategies for Double-Base Number Systems against Side Channel Attacks in ECC Scalar Multiplicationsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊柏因,鄭振牟
dc.subject.keyword橢圓曲線密碼系統,純量乘法,雙基底數系,旁道攻擊,旁道原子性,zh_TW
dc.subject.keywordECC,scalar multiplication,DBNS,side channel attacks,side channel atomicity,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2009-08-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
606.77 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved