請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43457完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周承復(Cheng-Fu Chou) | |
| dc.contributor.author | Yi-An Chen | en |
| dc.contributor.author | 陳逸安 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:21:57Z | - |
| dc.date.available | 2009-08-20 | |
| dc.date.copyright | 2009-08-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-19 | |
| dc.identifier.citation | [1] W. Burdic. Underwater Acoustic Systems Analysis. The Journal of the Acoustical Society of America, 89:3020, 1991.
[2] R.Coates. Underwater acoustic systems. Macmillan London, 1990. [3] I. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Ad Hoc Networks, vol. 3, no. 3, pp. 257–279, 2005. [4] J.Harris III and M.Zorzi Modeling the underwater acoustic channel in ns2. Proceeding of the 2nd international conference on Performance evaluation methodologies and tools, 2007 [5] J. Kong, J. Cui, D. Wu, and M. Gerla. Building underwater ad-hoc networks and sensor networks for large scale real-time aquatic applications. Proceedings of the IEEE MILCOM, 2005. [6] G. Bender and J. Gleason. Underwater mine countermeasure warfare system. Google Patents, 2006. US Patent 7,000,546. [7] J. Rice. Undersea Networked Acoustic Communication and Navigation for Autonomous Mine-Countermeasure Systems. Intl. Symposium on Technology and the Mine Problem, Mon¬terey, USA, April, 2002. [8] AUVSI. The Association for Unmanned Vehicle Systems International( AUVSI ). http:// www.auvsi.org/. [9] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture directions for networked sensors. ACM SIGPLAN Notices, 35(11):93–104, 2000. [10] L. Freitag, M. Grund, S. Singh, J. Partan, P. Koski, and K. Ball. The WHOI Micro-Modem: An Acoustic Communications and Navigation System for Multiple Platforms. IEEE Oceans Conference, 2005. [11] N. Chirdchoo, W. Soh, and K. Chua. Aloha-based MAC protocols with collision avoidance for underwater acoustic networks. Proc. IEEE InfoCom, May, 2007 [12] X. Guo, M. Frater, and M. Ryan. A Propagation-delay-tolerant Collision Avoidance Protocol for Underwater Acoustic Sensor Networks. OCEANS 2006-Asia Pacific, pages 1–6, 2007. [13] M. Molins and M. Stojanovic. Slotted FAMA: a MAC protocol for underwater acoustic networks. OCEANS 2006-Asia Pacific, pages 1–7, 2007. [14] M. Park and V. Rodoplu. UWAN-MAC: An Energy-Efficient MAC Protocol for Underwater Acoustic Wireless Sensor Networks. Oceanic Engineering, IEEE Journal of, 32(3):710– 720, 2007. [15] A. Syed, W. Ye, J. Heidemann, and B. Krishnamachari. Understanding spatio-temporal uncertainty in medium access with ALOHA protocols. Proceedings of the second workshop on Underwater networks, pages 41–48, 2007. [16] P. Xie and J. Cui. R-MAC: An Energy-Efficient MAC Protocol for Underwater Sensor Networks. Wireless Algorithms, Systems and Applications, 2007. WASA 2007. International Conference on, pages 187–198, 2007. [17] K. Kredo, P. Djukic, and P. Mohapatra, STUMP: Exploiting Position Diversity in the Staggered TDMA Underwater MAC Protocol, INFOCOM 2009. [18] Kuang-Fu Lai, Chih-Cheng HSU, Cheng-Fu Chou, “ST-MAC: A Spatial-Temporary Scheduling Mac protocol for Underwater Sensor Network”, INFOCOM 2009. [19] M. Samuel, S. Robert, F. M. J., and C. David, “Supporting aggregate queries over ad-hoc wireless sensor networks,” in WMCSA ’02: Proceedings of the Fourth IEEE Workshop on Mobile Computing Systems and Applications. Washington, DC, USA: IEEE Computer Society, 2002, p. 49. [20] G. Acar and A. Adams, “ACMENet: an underwater acoustic sensor network protocol for real-time environmental monitoring in coastal areas,” Radar, Sonar and Navigation, IEE Proceedings-, vol. 153, no. 4, pp. 365–380, 2006. [21] L. Freitag and M. Stojanovic, “Acoustic communications for regional undersea observatories,” Proceedings of Oceanology International, 2002. [22] X. Yang, K. Ong, W. Dreschel, K. Zeng, C. Mungle, and C. Grimes, “Design of a wireless sensor network for long-term, in-situ monitoring of an aqueous environment,” Sensors, vol. 2, no. 11, pp. 455–472, 2002. [23] B. Zhang, G. Sukhatme, and A. Requicha, “Adaptive sampling for marine microorganism monitoring,” Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on, vol. 2. [24] M. Stojanovic. On the relationship between capacity and distance in an underwater acoustic communication channel. 2007. [25] M. Molins and M. Stojanovic, “Slotted FAMA: a MAC protocol for underwater acoustic networks,” in Proc. IEEE Oceans Conf., May 2006. [26] X. Guo, M. R. Frater, and M. J. Ryan, “An adaptive propagation-delaytolerance MAC protocol for underwater acoustic sensor networks,” in Proc. IEEE Oceans Conf., Jun. 2007. [27] J. Yackoski and C.-C. Shen, “UW-FLASHR: Achieving high channel utilization in a time-based acoustic MAC protocol,” in Proc. ACM WUWNet Conf., Sep. 2008. [28] B. Peleato and M. Stojanovic, “A MAC protocol for ad-hoc underwater acoustic sensor networks,” in Proc. ACM WUWNet Conf., Sep. 2006, pp. 113–115. [29] P. Xie and J.-H. Cui, “R-MAC: an energy-efficient MAC protocol for underwater sensor networks,” in Proceedings of the IEEE International Conference on Wireless Algorithms, Systems and Applications (WASA), Aug. 2007, pp. 187–195. [30] A. Syed, W. Ye, B. Krishnamachari, and J. Heidemann, “Understanding spatio-temporal uncertainty in medium access with ALOHA protocols,” in Proc. ACM WUWNet Conf., Sep. 2007, pp. 41–48. [31] W.Ye, J.Heidemann, and D. Estrin. An energy-efficient MAC protocol for wireless sensor networks. INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, 3, 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43457 | - |
| dc.description.abstract | 自古以來,人類歷史的演進便與海洋息息相關;隨著技術改進,在陸地上廣為應用的感測器網路也開始被運用在水底。然而,因為水中的傳播環境與陸上相當不同,獨特的性質讓水底感測器網路衍生許多挑戰。
本篇論文的主題,在於設計一個水底感測器網路的媒體存取層排程法。為了改良原本中央式作法Traffic-based One-step Trial Approach (TOTA)所不足的規模可伸縮性,本篇研究所提出的分散式時空演算法,Distributed Traffic-based One-step Trial Approach (DTOTA),既保留了原本中央式處理的優點,也以更低的代價進行排程、更機動的方式動態調整行程。 DTOTA是接收端導向(Receiver-driven)的排程法。排程順序根據感測器距離基地台的遠近,由最近的感測器開始向外擴散。同階級(Level)的感測器,會在同一個時期(Epoch)進行排序。每個時期又可分成兩階段,分別為排程階段(Scheduling Phase)與復原階段(Recovery Phase)。感測器在排程階段指定連結行程,遵循依序(Ordering)的機制,減少發生衝突的可能;一旦任何感測器發現排程結果產生衝突,便在復原階段利用復原(Recovery)機制調整行程以排除衝突。利用依序和復原這兩種機制,我們可以確保最後的排程結果無衝突(Conflict-free)。 在動態調整行程的部份,我們運用Paused Frame來讓所有位於干擾範圍內的節點都能得知更動後的新行程。一旦有多個行程調整需求同時發生,為避免接收者混淆,我們也運用取消(Cancellation)與Exponential Back-off的機制來停止行程更新並分散連續碰撞的可能。 經實驗顯示,DTOTA比起中央式處理的TOTA大大減少了建構行程的費用。網路產出部份,DTOTA與TOTA相當接近,更大幅領先同為分散式作法的Staggered TDMA Underwater Mac Protocol(STUMP)。DTOTA也保有了分散式排程法的彈性,在動態調整行程所需費用上遠低於TOTA。 | zh_TW |
| dc.description.abstract | From ancient times, human history is associated closely with ocean. As technology progressing, people start to use sensors underwater. However, there are many characteristics of Underwater Sensor Network (UWSN) different from those of terrestrial networks. These environment limits cause new problems and new challenges.
In this thesis, we focus on the design of an Underwater Sensor Network MAC scheduling protocol. In order to improve the scalability of centralized scheduling algorithm, Traffic-based One-step Trial Approach (TOTA), we propose a distributed algorithm to assign schedules. Distributed Traffic-based One-step Trial Approach (DTOTA) is a receiver-driven scheduling algorithm. Schedule assignments start from sensor nodes nearest from sink, propagating in a level by level fashion. The scheduling procedure can be divided into several epochs, each with two phases: Scheduling phase and Recovery phase. Sensor nodes assign schedules for responsible edges in Scheduling phase. With the aid of Ordering mechanism, the probability of conflicted schedule results can be reduced. Whenever there is a conflict, sensor nodes can trigger the Recovery mechanism to adjust previous schedules. Eventually, the schedule assignments of all links will be conflict-free. In the part of adaptation, we use Paused Frame to transmit new schedules to all nodes within interference range. Whenever there are multiple adaptation requests happen simultaneously, in order to avoid the confusion of receiver, we use the cancellation mechanism to revoke new schedule notifications and postpone them with exponential back-off. From simulation results, DTOTA shows a great improvement in scalability from TOTA. In network throughput, DTOTA can achieve 94% of TOTA, and 25% more than the other distributed scheduling method, Staggered TDMA Underwater Mac Protocol (STUMP). We also show that DTOTA maintains much lower adaptation overhead, even with the growing of network scale. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:21:57Z (GMT). No. of bitstreams: 1 ntu-98-R95922175-1.pdf: 1203488 bytes, checksum: 09954f8b39a84ad58e3417d7d3e6301d (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III 中文關鍵詞 IV Abstract V Key words VI Contents VII List of Figures X Chapter 1 Introduction 1 1.1 Background Information 1 1.2 Characteristics of UWSN 3 1.2.1 Spatial-Temporary Uncertainty 4 1.3 Impacts on Terrestrial Channel Access methods 6 1.3.1 Contention-based MAC Protocol 7 1.3.2 Contention-free MAC Protocol 9 1.4 Motivation 10 1.5 Thesis Organization 11 Chapter 2 Related Work 12 2.1 STUMP (Staggered TDMA Underwater Mac Protocol) 12 2.2 ST-MAC(Spatial-Temporary Scheduling MAC Protocol) 13 2.2.1 Conflict Cases Analysis 14 Chapter 3 DTOTA Protocol Design 19 3.1 Guidance 19 3.1.1 Conflict Cases Re-visit 19 3.1.2 Receiver-driven Scheduling 22 3.2 Conflict Schedule Cases Analysis 23 3.2.1 Transmission Links 23 3.2.2 Conflict Schedule Cases : L-> H 24 3.2.3 Conflict Schedule Cases : S 25 3.2.4 Conflict Schedule Cases : H-> L 27 3.3 Ordering 28 3.4 Recovery 29 3.5 A Summary of DTOTA 30 3.6 Retrieving Information from Schedule Notification Messages 32 Chapter 4 Adaptation 34 4.1 Paused Frame 35 4.2 Adaptation Period 37 4.3 A Summary of Adaptation 41 Chapter 5 Performance Evaluation 42 5.1 Simulation Methodology 43 5.2 Scheduling Results 44 5.2.1 Performance Comparison 44 5.2.2 Construction Overhead 46 5.3 Adaptation Results 48 5.3.1 Adaptation Broadcast Overhead 48 5.3.2 Adaptation Finishing Time 51 Chapter 6 Conclusions 52 References 53 | |
| dc.language.iso | zh-TW | |
| dc.subject | 分散式 | zh_TW |
| dc.subject | 排程 | zh_TW |
| dc.subject | 水底感測器網路 | zh_TW |
| dc.subject | 接收端導向 | zh_TW |
| dc.subject | 調整 | zh_TW |
| dc.subject | 媒體存取層 | zh_TW |
| dc.subject | Underwater Sensor Network | en |
| dc.subject | Adaptation | en |
| dc.subject | Receiver-driven | en |
| dc.subject | Scheduling | en |
| dc.subject | Distributed | en |
| dc.subject | MAC | en |
| dc.title | 分散式時空性排程的水底感測器網路媒體存取協定 | zh_TW |
| dc.title | Distributed Spatial-Temporal Scheduling MAC Protocol
for Underwater Sensor Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡明哲(Ming-Jer Tsai),逄愛君(Ai-Chun Pang),陳伶志(Ling-Jyh Chen),趙禧綠(Hsi-Lu Chao) | |
| dc.subject.keyword | 水底感測器網路,媒體存取層,分散式,排程,接收端導向,調整, | zh_TW |
| dc.subject.keyword | Underwater Sensor Network,MAC,Distributed,Scheduling,Receiver-driven,Adaptation, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
