請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43431完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許源浴 | |
| dc.contributor.author | CHIA-CHING CHEN | en |
| dc.contributor.author | 陳佳慶 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:56:27Z | - |
| dc.date.available | 2012-07-03 | |
| dc.date.copyright | 2009-07-03 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-06-26 | |
| dc.identifier.citation | [1]http://unfccc.int/resource/docs/convkp/kpeng.html ”Kyoto Protocal To The United Nations Framework Convention On Climate Change,” 2007.
[2]http://www.taipower.com.tw/ “台電主要新增個別發電計畫,” 2009. [3]梁國堂, 靜態同步補償器控制器參數之設計, 台灣大學電機所碩士論文, 2008. [4]翁永財, 應用於電壓調整之靜態同步補償器設計, 台灣大學電機所碩士論文, 2002. [5]T. J. E. Miller, Reactive Power Control In Electric System, John Wiley & Sons, Inc, 1982. [6]A. A. Mahmoud, T. H. Ortmeyer and R. G. Harley, “Effects Of Reactive Compensation on Induction Motor Dynamic Performance,” IEEE Trans. Power Apparatus and Systems, Vol. PAS-99, No. 3, May/June 1980. [7]L. Gyugyi, “Reactive Power Generation and Control by Thyristor Circuits,” IEEE Trans. Industry Application, Vol. IA-15, No. 5, September/October 1979. [8]L. Gyugyi, “Power Electronics in Electric Utilities:Static Var Compensators,” Proceedings of the IEEE, Vol. 76, No. 4, pp.483-494, April 1998. [9]L. T. Moran, P. D. Ziogas and G. Joos, “Analysis and Design of a Three-Phase Synchronous Solid-State Var Compensator,” IEEE Trans. Power Delivery, Vol. 25, No. 4, pp. 598-608, July/August 1989. [10]G. Joos, L. Moran and P. Ziogas, “Performance analysis of a PWM inverter VAR compensator,” IEEE Trans. Power Electronics, Vol. 6, No. 3, pp.380-391, July 1991. [11]B. T. Ooi and S. Z. Dai, “Series-Type Solid-State Static Var Compensator,” IEEE Trans. Power Electronics, Vol. 8, No. 2, pp. 164-169, April 1993. [12]A.Ghosh and G. Ledwich, “Compensation of Distribution System Voltage Using DVR,” IEEE Trans. Power Delivery, Vol. 17, No.4, pp. 1030-1036, October 2002. [13]M. H. Haque, “Sability Improvement by FACTS Devices:A Comparison between STATCOM and SSSC,” IEEE, Power Engineering Society General Meeting , Vol. 2, pp. 1708-1713, June 2005. [14]K. Haddad and G. Joos, “Distribution system voltage regulation under fault condition using static series regulators,” IEEE Industry Applications Society Annual Meeting, New Orleans, pp. 1383-1389, 1997. [15]R. Pena, J. C. Clare and G. M. Asher, “Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation,” IEE Proceeding, Vol.143, No.3, pp. 231-241, May 1996. [16]桂人傑, “變速風機之控制系統,” 機械工業雜誌, 精密製造與新興能源機械技術專輯, Vol. 278, pp.51-67, 2006. [17]C. Schauder and H. Mehta, “Vector Analysis and Control of Advanced Static VAR Compensators,” IEE Proceedings-C, Vol. 140, No. 4, pp.299-306, 1993. [18]N. G. Hingorani and L. Gyugyi, Understanding FACTS:Concepts and Technology of Flexible AC Transmission Systems, Institute of Electrical and Electronics Engineers, Inc, IEEE Press, 2000. [19]C. E. J. Bowler, “FACTS and SSSR-Focus on TCSC Application and Mitigation of SSR problems,” Proceedings of Flexible AC Transmission Systems (FACTS) Conference, Boston, MA, May 1992. [20]C. M. Ong, Dynamic Simulation of Electric Machinery:Using MATLAB○R/Simulink, Pearson Education Taiwan Ltd, 1998. [21]P. M. Anderson and A. A. Fouad, Power System Control and Stability, John Wiley & Sons, Inc, [22]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics:Converters, Applications, and Design, John Wiley & Sons, Inc, 2003. [23]王興良, 新型數位式主動電力濾波器, 台灣大學電機所碩士論文, 1999. [24]林政銘, 應用模糊理論設計動態電壓調整器, 台灣大學電機所碩士論文, 2007. [25]劉國安, 應用模糊理論與滑動模式控制設計動態電壓調整器, 台灣大學電機所碩士論文, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43431 | - |
| dc.description.abstract | 隨著石化燃料的逐漸減少而且價格日漸高漲,造成發電的成本越來越高;並伴隨著環保意識的抬頭,各國開始控管溫室效應氣體的排放,提倡使用綠色能源,所以替代能源的開發刻不容緩的進行中。替代能源的種類有許多種,例如風力、太陽能、地熱、潮汐、生質能…等。台灣西部沿海及外島地區擁有相當豐富的風能資源,所以非常適合風力發電的發展。
風力發電機組的主流型式之一為使用感應式發電機組來發電,但是感應機本身有電壓調整能力不佳的缺點,加上風力是時變無法預測的,將使得所發出來的電力不穩定,造成所連接的匯流排電壓不穩定。電力品質對科技產業的影響極大,不穩定的供電將會造成產品不良率的升高及敏感設備的損壞,所以如何改善電力系統的電壓穩定,維持良好的電力品質將是未來電力工程師努力的目標及所面對的問題。 動態電壓調整器是利用弦式脈波寬調變技術來將直流側電容所儲存的能量轉換成交流成份送出,並可以藉由改變輸出電壓的角度,來調整所輸出實、虛功,達到系統電壓控制的目的。將藉由MATLAB/Simulink的模擬,來驗證本論文設計的動態電壓調整器適合應用於感應式發電機併聯系統。 | zh_TW |
| dc.description.abstract | As a result of the price hike in fossil fuels and the effort to control CO2 emissions, developing green energies received much attention in recent years. There are a great variety of green energies such as wind power, solar power, geothermal energy, tide energy, bio-energy,…,etc. Fortunately, Taiwan appears to be a good place to develop of wind power generation, especially in the west coast and the islands around Taiwan.
Induction generators have been widely used for wind power generators due to their low cost. When they are driven by a variable speed wind turbine tend to have poor voltage regulation. As a result, how to improve the voltage profile of a wind power generation system is of major concern in this work. To stabilize the output voltage of a wind power generation system, a dynamic voltage regulator, which comprises a voltage source inverter and a dc capacitor, is proposed in this thesis. Through the modulation of the real and reactive power outputs of the DVR, the dc capacitor voltage and the ac system voltage can be held at the specified values. Through dynamic simulations using MATLAB/Simulink, the effectiveness of the proposed dynamic voltage regulator in regulating the output voltage of a wind power generator is demonstrated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:56:27Z (GMT). No. of bitstreams: 1 ntu-98-R96921055-1.pdf: 859305 bytes, checksum: 4626a75a9dc158a1ad3287312b158b17 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 風力發電機簡介 6 1.4 研究方法 7 1.5 論文內容介紹 8 第二章 基礎理論分析 9 2.1 串聯補償器原理 9 2.1.1 電壓穩定度 13 2.1.2 暫態穩定度 14 2.1.3 電力系統振盪阻尼 15 2.2 串聯型補償器之發展 16 2.3 同步旋轉座標轉換 18 第三章 變流器設計 21 3.1 前言 21 3.2 脈波寬度調變(PWM)切換技術 21 3.2.1 弦式脈波寬度調變控制器 21 3.2.2 變流器切換頻率之分析 23 3.3 其他元件參數之決定 25 3.3.1 隔離變壓器之選定 25 3.3.2 濾波電感器之選定 26 3.3.3 補償器之容量計算 27 第四章 動態電壓調整器分析 28 4.1 前言 28 4.2 動態電壓調整器之實虛功分析 28 4.3 動態電壓調整器之控制 31 4.3.1 數學模型建立 31 4.3.2 解耦合電流控制 33 4.3.3 直流電壓及交流電壓之控制 37 4.4 動態電壓調整器之控制器 38 第五章 模擬結果與分析 39 5.1 前言 39 5.2 強系統(Strong System)下發電機轉速及負載變動 39 5.2.1 發電機轉速變動 41 5.2.2 負載變化 45 5.3 弱系統(Week System)下發電機轉速及負載變動 47 5.3.1 發電機轉速變動 47 5.3.2 負載變化 51 5.4 結果討論 53 第六章 結論 55 6.1 結論 55 6.2 未來研究方向 55 參考文獻 57 作者簡介 60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 感應發電機 | zh_TW |
| dc.subject | 風力發電 | zh_TW |
| dc.subject | 反流器 | zh_TW |
| dc.subject | 弦式脈波寬度調變 | zh_TW |
| dc.subject | 動態電壓調整器 | zh_TW |
| dc.subject | wind energy generation | en |
| dc.subject | dynamic voltage regulator | en |
| dc.subject | sinusoidal pulse width modulation | en |
| dc.subject | inverter | en |
| dc.subject | induction generator | en |
| dc.title | 應用動態電壓調整器於感應發電機併聯電力系統 | zh_TW |
| dc.title | Application of Dynamic Voltage Regulator for a Grid-Connected Induction Generator | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張忠良,林建廷,楊金石,劉添華 | |
| dc.subject.keyword | 動態電壓調整器,弦式脈波寬度調變,反流器,感應發電機,風力發電, | zh_TW |
| dc.subject.keyword | dynamic voltage regulator,sinusoidal pulse width modulation,inverter,induction generator,wind energy generation, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-06-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 839.17 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
