Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43412
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林仁混(Jen-Kun Lin)
dc.contributor.authorHsiu-Chen Huangen
dc.contributor.author黃琇珍zh_TW
dc.date.accessioned2021-06-15T01:55:11Z-
dc.date.available2014-09-15
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-06-29
dc.identifier.citation1. Chu KC, Tarone RE, Kessler LG, Ries LA, Hankey BF, Miller BA, Edwards BK 1996 Recent trends in U.S. breast cancer incidence, survival, and mortality rates. J Natl Cancer Inst 88:1571-1579
2. Lacey JV, Jr., Devesa SS, Brinton LA 2002 Recent trends in breast cancer incidence and mortality. Environ Mol Mutagen 39:82-88
3. Traub F, Mengel M, Luck HJ, Kreipe HH, von Wasielewski R 2006 Prognostic impact of Skp2 and p27 in human breast cancer. Breast Cancer Res Treat 99:185-191
4. Hua KT, Way TD, Lin JK 2006 Pentagalloylglucose inhibits estrogen receptor alpha by lysosome-dependent depletion and modulates ErbB/PI3K/Akt pathway in human breast cancer MCF-7 cells. Mol Carcinog 45:551-560
5. Jordan VC 2000 Progress in the prevention of breast cancer: concept to reality. J Steroid Biochem Mol Biol 74:269-277
6. Miller JL 1998 Progress in breast cancer treatment: prevention, new therapies come to forefront. Am J Health Syst Pharm 55:2326, 2328, 2330
7. Zheng WQ, Zheng JM, Ma R, Meng FF, Ni CR 2005 Relationship between levels of Skp2 and P27 in breast carcinomas and possible role of Skp2 as targeted therapy. Steroids 70:770-774
8. Chiarle R, Pagano M, Inghirami G 2001 The cyclin dependent kinase inhibitor p27 and its prognostic role in breast cancer. Breast Cancer Res 3:91-94
9. Sonoda H, Inoue H, Ogawa K, Utsunomiya T, Masuda TA, Mori M 2006 Significance of skp2 expression in primary breast cancer. Clin Cancer Res 12:1215-1220
10. Hershko D, Bornstein G, Ben-Izhak O, Carrano A, Pagano M, Krausz MM, Hershko A 2001 Inverse relation between levels of p27(Kip1) and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas. Cancer 91:1745-1751
11. Yang G, Ayala G, De Marzo A, Tian W, Frolov A, Wheeler TM, Thompson TC, Harper JW 2002 Elevated Skp2 protein expression in human prostate cancer: association with loss of the cyclin-dependent kinase inhibitor p27 and PTEN and with reduced recurrence-free survival. Clin Cancer Res 8:3419-3426
12. Osoegawa A, Yoshino I, Tanaka S, Sugio K, Kameyama T, Yamaguchi M, Maehara Y 2004 Regulation of p27 by S-phase kinase-associated protein 2 is associated with aggressiveness in non-small-cell lung cancer. J Clin Oncol 22:4165-4173
13. Sui L, Dong Y, Watanabe Y, Yamaguchi F, Sugimoto K, Tokuda M 2006 Clinical significance of Skp2 expression, alone and combined with Jab1 and p27 in epithelial ovarian tumors. Oncol Rep 15:765-771
14. Schiffer D, Cavalla P, Fiano V, Ghimenti C, Piva R 2002 Inverse relationship between p27/Kip.1 and the F-box protein Skp2 in human astrocytic gliomas by immunohistochemistry and Western blot. Neurosci Lett 328:125-128
15. Chiarle R, Fan Y, Piva R, Boggino H, Skolnik J, Novero D, Palestro G, De Wolf-Peeters C, Chilosi M, Pagano M, Inghirami G 2002 S-phase kinase-associated protein 2 expression in non-Hodgkin's lymphoma inversely correlates with p27 expression and defines cells in S phase. Am J Pathol 160:1457-1466
16. Signoretti S, Di Marcotullio L, Richardson A, Ramaswamy S, Isaac B, Rue M, Monti F, Loda M, Pagano M 2002 Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Invest 110:633-641
17. Davidovich S, Ben-Izhak O, Shapira M, Futerman B, Hershko DD 2008 Over-expression of Skp2 is associated with resistance to preoperative doxorubicin-based chemotherapy in primary breast cancer. Breast Cancer Res 10:R63
18. Bhattacharya S, Garriga J, Calbo J, Yong T, Haines DS, Grana X 2003 SKP2 associates with p130 and accelerates p130 ubiquitylation and degradation in human cells. Oncogene 22:2443-2451
19. Zheng XY, Ding W, Xie LP, Chen ZD 2004 [Correlation of Skp2 and P27kip1 protein expression and clinicopathological features of prostate cancer]. Ai Zheng 23:215-218
20. Li JQ, Wu F, Masaki T, Kubo A, Fujita J, Dixon DA, Beauchamp RD, Ishida T, Kuriyama S, Imaida K 2004 Correlation of Skp2 with carcinogenesis, invasion, metastasis, and prognosis in colorectal tumors. Int J Oncol 25:87-95
21. Yokoi S, Yasui K, Saito-Ohara F, Koshikawa K, Iizasa T, Fujisawa T, Terasaki T, Horii A, Takahashi T, Hirohashi S, Inazawa J 2002 A novel target gene, SKP2, within the 5p13 amplicon that is frequently detected in small cell lung cancers. Am J Pathol 161:207-216
22. Ma XM, Liu JH, Guo JW, Liu Y, Zuo LF 2006 [Correlation of Skp2 expression in gastric carcinoma to expression of P27 and PTEN]. Ai Zheng 25:56-61
23. Mamillapalli R, Gavrilova N, Mihaylova VT, Tsvetkov LM, Wu H, Zhang H, Sun H 2001 PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27(KIP1) through the ubiquitin E3 ligase SCF(SKP2). Curr Biol 11:263-267
24. Hershko DD 2008 Oncogenic properties and prognostic implications of the ubiquitin ligase Skp2 in cancer. Cancer 112:1415-1424
25. Porter PL, Malone KE, Heagerty PJ, Alexander GM, Gatti LA, Firpo EJ, Daling JR, Roberts JM 1997 Expression of cell-cycle regulators p27Kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nat Med 3:222-225
26. Catzavelos C, Bhattacharya N, Ung YC, Wilson JA, Roncari L, Sandhu C, Shaw P, Yeger H, Morava-Protzner I, Kapusta L, Franssen E, Pritchard KI, Slingerland JM 1997 Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. Nat Med 3:227-230
27. Foster JS, Fernando RI, Ishida N, Nakayama KI, Wimalasena J 2003 Estrogens down-regulate p27Kip1 in breast cancer cells through Skp2 and through nuclear export mediated by the ERK pathway. J Biol Chem 278:41355-41366
28. Slotky M, Shapira M, Ben-Izhak O, Linn S, Futerman B, Tsalic M, Hershko DD 2005 The expression of the ubiquitin ligase subunit Cks1 in human breast cancer. Breast Cancer Res 7:R737-744
29. Fabian CJ, Kimler BF 2002 Chemoprevention of breast cancer: implications for postmenopausal women. Drugs Aging 19:43-78
30. Daudt A, Alberg AJ, Helzlsouer KJ 1996 Epidemiology, prevention, and early detection of breast cancer. Curr Opin Oncol 8:455-461
31. Helzlsouer KJ 1995 Epidemiology, prevention, and early detection of breast cancer. Curr Opin Oncol 7:489-494
32. Cline JM, Hughes CL, Jr. 1998 Phytochemicals for the prevention of breast and endometrial cancer. Cancer Treat Res 94:107-134
33. Naithani R, Huma LC, Moriarty RM, McCormick DL, Mehta RG 2008 Comprehensive review of cancer chemopreventive agents evaluated in experimental carcinogenesis models and clinical trials. Curr Med Chem 15:1044-1071
34. Sporn MB, Dunlop NM, Newton DL, Smith JM 1976 Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed Proc 35:1332-1338
35. Birt DF 2006 Phytochemicals and cancer prevention: from epidemiology to mechanism of action. J Am Diet Assoc 106:20-21
36. Carolin KA, Pass HA 2000 Prevention of breast cancer. Crit Rev Oncol Hematol 33:221-238
37. Surh YJ 2003 Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768-780
38. Mukherjee AK, Basu S, Sarkar N, Ghosh AC 2001 Advances in cancer therapy with plant based natural products. Curr Med Chem 8:1467-1486
39. Farr DR 1997 Functional foods. Cancer Lett 114:59-63
40. van Poppel G, van den Berg H 1997 Vitamins and cancer. Cancer Lett 114:195-202
41. Birt DF, Hendrich S, Wang W 2001 Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther 90:157-177
42. Liang YC, Tsai SH, Tsai DC, Lin-Shiau SY, Lin JK 2001 Suppression of inducible cyclooxygenase and nitric oxide synthase through activation of peroxisome proliferator-activated receptor-gamma by flavonoids in mouse macrophages. FEBS Lett 496:12-18
43. Ferriola PC, Cody V, Middleton E, Jr. 1989 Protein kinase C inhibition by plant flavonoids. Kinetic mechanisms and structure-activity relationships. Biochem Pharmacol 38:1617-1624
44. Agullo G, Gamet-Payrastre L, Manenti S, Viala C, Remesy C, Chap H, Payrastre B 1997 Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition. Biochem Pharmacol 53:1649-1657
45. Jing Y, Waxman S 1995 Structural requirements for differentiation-induction and growth-inhibition of mouse erythroleukemia cells by isoflavones. Anticancer Res 15:1147-1152
46. Wang IK, Lin-Shiau SY, Lin JK 1999 Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer 35:1517-1525
47. Dai Q, Shu XO, Jin F, Potter JD, Kushi LH, Teas J, Gao YT, Zheng W 2001 Population-based case-control study of soyfood intake and breast cancer risk in Shanghai. Br J Cancer 85:372-378
48. Limer JL, Speirs V 2004 Phyto-oestrogens and breast cancer chemoprevention. Breast Cancer Res 6:119-127
49. Tham DM, Gardner CD, Haskell WL 1998 Clinical review 97: Potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence. J Clin Endocrinol Metab 83:2223-2235
50. Setchell KD, Borriello SP, Hulme P, Kirk DN, Axelson M 1984 Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease. Am J Clin Nutr 40:569-578
51. Dixon RA 2004 Phytoestrogens. Annu Rev Plant Biol 55:225-261
52. Cornwell T, Cohick W, Raskin I 2004 Dietary phytoestrogens and health. Phytochemistry 65:995-1016
53. Maggiolini M, Bonofiglio D, Marsico S, Panno ML, Cenni B, Picard D, Ando S 2001 Estrogen receptor alpha mediates the proliferative but not the cytotoxic dose-dependent effects of two major phytoestrogens on human breast cancer cells. Mol Pharmacol 60:595-602
54. Fioravanti L, Cappelletti V, Miodini P, Ronchi E, Brivio M, Di Fronzo G 1998 Genistein in the control of breast cancer cell growth: insights into the mechanism of action in vitro. Cancer Lett 130:143-152
55. An J, Tzagarakis-Foster C, Scharschmidt TC, Lomri N, Leitman DC 2001 Estrogen receptor beta-selective transcriptional activity and recruitment of coregulators by phytoestrogens. J Biol Chem 276:17808-17814
56. Le Corre L, Chalabi N, Delort L, Bignon YJ, Bernard-Gallon DJ 2005 Resveratrol and breast cancer chemoprevention: molecular mechanisms. Mol Nutr Food Res 49:462-471
57. Le Corre L, Fustier P, Chalabi N, Bignon YJ, Bernard-Gallon D 2004 Effects of resveratrol on the expression of a panel of genes interacting with the BRCA1 oncosuppressor in human breast cell lines. Clin Chim Acta 344:115-121
58. Xu J, Loo G 2001 Different effects of genistein on molecular markers related to apoptosis in two phenotypically dissimilar breast cancer cell lines. J Cell Biochem 82:78-88
59. Shao ZM, Shen ZZ, Fontana JA, Barsky SH 2000 Genistein's 'ER-dependent and independent' actions are mediated through ER pathways in ER-positive breast carcinoma cell lines. Anticancer Res 20:2409-2416
60. Pianetti S, Guo S, Kavanagh KT, Sonenshein GE 2002 Green tea polyphenol epigallocatechin-3 gallate inhibits Her-2/neu signaling, proliferation, and transformed phenotype of breast cancer cells. Cancer Res 62:652-655
61. Wuttke W, Jarry H, Westphalen S, Christoffel V, Seidlova-Wuttke D 2002 Phytoestrogens for hormone replacement therapy? J Steroid Biochem Mol Biol 83:133-147
62. Foster JS, Henley DC, Ahamed S, Wimalasena J 2001 Estrogens and cell-cycle regulation in breast cancer. Trends Endocrinol Metab 12:320-327
63. Yamashita H 2008 Current research topics in endocrine therapy for breast cancer. Int J Clin Oncol 13:380-383
64. Wu X, Hawse JR, Subramaniam M, Goetz MP, Ingle JN, Spelsberg TC 2009 The tamoxifen metabolite, endoxifen, is a potent antiestrogen that targets estrogen receptor alpha for degradation in breast cancer cells. Cancer Res 69:1722-1727
65. Farabegoli F, Barbi C, Lambertini E, Piva R 2007 (-)-Epigallocatechin-3-gallate downregulates estrogen receptor alpha function in MCF-7 breast carcinoma cells. Cancer Detect Prev 31:499-504
66. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL 1987 Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177-182
67. Yu D, Hung MC 2000 Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene 19:6115-6121
68. Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, Wolter JM, Paton V, Shak S, Lieberman G, Slamon DJ 1999 Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17:2639-2648
69. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L 2001 Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783-792
70. Cardoso F, Piccart MJ, Durbecq V, Di Leo A 2002 Resistance to trastuzumab: a necessary evil or a temporary challenge? Clin Breast Cancer 3:247-257; discussion 258-249
71. Tolaney SM, Krop IE 2009 Mechanisms of trastuzumab resistance in breast cancer. Anticancer Agents Med Chem 9:348-355
72. Lan KH, Lu CH, Yu D 2005 Mechanisms of trastuzumab resistance and their clinical implications. Ann N Y Acad Sci 1059:70-75
73. Rusnak DW, Lackey K, Affleck K, Wood ER, Alligood KJ, Rhodes N, Keith BR, Murray DM, Knight WB, Mullin RJ, Gilmer TM 2001 The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther 1:85-94
74. Wood ER, Truesdale AT, McDonald OB, Yuan D, Hassell A, Dickerson SH, Ellis B, Pennisi C, Horne E, Lackey K, Alligood KJ, Rusnak DW, Gilmer TM, Shewchuk L 2004 A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res 64:6652-6659
75. Farhana L, Dawson M, Rishi AK, Zhang Y, Van Buren E, Trivedi C, Reichert U, Fang G, Kirschner MW, Fontana JA 2002 Cyclin B and E2F-1 expression in prostate carcinoma cells treated with the novel retinoid CD437 are regulated by the ubiquitin-mediated pathway. Cancer Res 62:3842-3849
76. Wirbelauer C, Sutterluty H, Blondel M, Gstaiger M, Peter M, Reymond F, Krek W 2000 The F-box protein Skp2 is a ubiquitylation target of a Cul1-based core ubiquitin ligase complex: evidence for a role of Cul1 in the suppression of Skp2 expression in quiescent fibroblasts. EMBO J 19:5362-5375
77. Thangapazham RL, Singh AK, Sharma A, Warren J, Gaddipati JP, Maheshwari RK 2007 Green tea polyphenols and its constituent epigallocatechin gallate inhibits proliferation of human breast cancer cells in vitro and in vivo. Cancer Lett 245:232-241. Epub 2006 Mar 2006.
78. Liao S, Umekita Y, Guo J, Kokontis JM, Hiipakka RA 1995 Growth inhibition and regression of human prostate and breast tumors in athymic mice by tea epigallocatechin gallate. Cancer Lett 96:239-243.
79. Goodin MG, Fertuck KC, Zacharewski TR, Rosengren RJ 2002 Estrogen receptor-mediated actions of polyphenolic catechins in vivo and in vitro. Toxicol Sci 69:354-361.
80. Nakachi K, Suemasu K, Suga K, Takeo T, Imai K, Higashi Y 1998 Influence of drinking green tea on breast cancer malignancy among Japanese patients. Jpn J Cancer Res 89:254-261.
81. Zhang M, Holman CD, Huang JP, Xie X 2007 Green tea and the prevention of breast cancer: a case-control study in Southeast China. Carcinogenesis 28:1074-1078. Epub 2006 Dec 1020.
82. Sedlacek SM, Horwitz KB 1984 The role of progestins and progesterone receptors in the treatment of breast cancer. Steroids 44:467-484.
83. Cariou S, Donovan JC, Flanagan WM, Milic A, Bhattacharya N, Slingerland JM 2000 Down-regulation of p21WAF1/CIP1 or p27Kip1 abrogates antiestrogen-mediated cell cycle arrest in human breast cancer cells. Proc Natl Acad Sci U S A 97:9042-9046.
84. Tan P, Cady B, Wanner M, Worland P, Cukor B, Magi-Galluzzi C, Lavin P, Draetta G, Pagano M, Loda M 1997 The cell cycle inhibitor p27 is an independent prognostic marker in small (T1a,b) invasive breast carcinomas. Cancer Res 57:1259-1263.
85. Catzavelos C, Bhattacharya N, Ung YC, Wilson JA, Roncari L, Sandhu C, Shaw P, Yeger H, Morava-Protzner I, Kapusta L, Franssen E, Pritchard KI, Slingerland JM 1997 Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. Nat Med 3:227-230.
86. Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K, Shirane M, Tsunematsu R, Tsukiyama T, Ishida N, Kitagawa M, Nakayama K, Hatakeyama S 2000 Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J 19:2069-2081.
87. Alkarain A, Slingerland J 2004 Deregulation of p27 by oncogenic signaling and its prognostic significance in breast cancer. Breast Cancer Res 6:13-21
88. Masuda TA, Inoue H, Sonoda H, Mine S, Yoshikawa Y, Nakayama K, Nakayama K, Mori M 2002 Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis. Cancer Res 62:3819-3825
89. Lim MS, Adamson A, Lin Z, Perez-Ordonez B, Jordan RC, Tripp S, Perkins SL, Elenitoba-Johnson KS 2002 Expression of Skp2, a p27(Kip1) ubiquitin ligase, in malignant lymphoma: correlation with p27(Kip1) and proliferation index. Blood 100:2950-2956
90. Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J, Krek W 2001 Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci U S A 98:5043-5048
91. Hershko DD 2008 Oncogenic properties and prognostic implications of the ubiquitin ligase Skp2 in cancer. Cancer
92. Liang YC, Lin-Shiau SY, Chen CF, Lin JK 1999 Inhibition of cyclin-dependent kinases 2 and 4 activities as well as induction of Cdk inhibitors p21 and p27 during growth arrest of human breast carcinoma cells by (-)-epigallocatechin-3-gallate. J Cell Biochem 75:1-12
93. Foster JS, Henley DC, Bukovsky A, Seth P, Wimalasena J 2001 Multifaceted regulation of cell cycle progression by estrogen: regulation of Cdk inhibitors and Cdc25A independent of cyclin D1-Cdk4 function. Mol Cell Biol 21:794-810
94. Prall OW, Sarcevic B, Musgrove EA, Watts CK, Sutherland RL 1997 Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2. J Biol Chem 272:10882-10894
95. Foster JS, Wimalasena J 1996 Estrogen regulates activity of cyclin-dependent kinases and retinoblastoma protein phosphorylation in breast cancer cells. Mol Endocrinol 10:488-498
96. Ahamed S, Foster JS, Bukovsky A, Diehl JA, Wimalasena J 2002 Removal of Cdk inhibitors through both sequestration and downregulation in zearalenone-treated MCF-7 breast cancer cells. Mol Carcinog 34:45-58
97. Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R, Franssen E, Slingerland JM 2002 PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 8:1153-1160
98. Auld CA, Caccia CD, Morrison RF 2007 Hormonal induction of adipogenesis induces Skp2 expression through PI3K and MAPK pathways. J Cell Biochem 100:204-216
99. Nicolini A, Giardino R, Carpi A, Ferrari P, Anselmi L, Colosimo S, Conte M, Fini M, Giavaresi G, Berti P, Miccoli P 2006 Metastatic breast cancer: an updating. Biomed Pharmacother 60:548-556
100. Berry DA, Cirrincione C, Henderson IC, Citron ML, Budman DR, Goldstein LJ, Martino S, Perez EA, Muss HB, Norton L, Hudis C, Winer EP 2006 Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. Jama 295:1658-1667
101. Yang CS, Wang ZY 1993 Tea and cancer. J Natl Cancer Inst 85:1038-1049
102. Hirayama T 1985 A large scale cohort study on cancer risks by diet--with special reference to the risk reducing effects of green-yellow vegetable consumption. Princess Takamatsu Symp 16:41-53
103. Yang GY, Liao J, Kim K, Yurkow EJ, Yang CS 1998 Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis 19:611-616
104. Paul B, Hayes CS, Kim A, Athar M, Gilmour SK 2005 Elevated polyamines lead to selective induction of apoptosis and inhibition of tumorigenesis by (-)-epigallocatechin-3-gallate (EGCG) in ODC/Ras transgenic mice. Carcinogenesis 26:119-124
105. Suzuki S, Fukasawa H, Kitagawa K, Uchida C, Hattori T, Isobe T, Oda T, Misaki T, Ohashi N, Nakayama K, Nakayama KI, Hishida A, Yamamoto T, Kitagawa M 2007 Renal damage in obstructive nephropathy is decreased in Skp2-deficient mice. Am J Pathol 171:473-483
106. Wei W, Ayad NG, Wan Y, Zhang GJ, Kirschner MW, Kaelin WG, Jr. 2004 Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428:194-198
107. Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M 2004 Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 428:190-193
108. Shapira M, Kakiashvili E, Rosenberg T, Hershko DD 2006 The mTOR inhibitor rapamycin down-regulates the expression of the ubiquitin ligase subunit Skp2 in breast cancer cells. Breast Cancer Res 8:R46
109. Fisher B, Costantino JP, Wickerham DL, Cecchini RS, Cronin WM, Robidoux A, Bevers TB, Kavanah MT, Atkins JN, Margolese RG, Runowicz CD, James JM, Ford LG, Wolmark N 2005 Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst 97:1652-1662
110. Sheppard C, Beyel V, Fracchia J, Merlis S 1974 Polypharmacy in psychiatry: a multi-state comparison of psychotropic drug combinations. Dis Nerv Syst 35:183-189
111. Johnston SR 2005 Clinical trials of intracellular signal transductions inhibitors for breast cancer--a strategy to overcome endocrine resistance. Endocr Relat Cancer 12 Suppl 1:S145-157
112. Chisholm K, Bray BJ, Rosengren RJ 2004 Tamoxifen and epigallocatechin gallate are synergistically cytotoxic to MDA-MB-231 human breast cancer cells. Anticancer Drugs 15:889-897
113. Suganuma M, Okabe S, Kai Y, Sueoka N, Sueoka E, Fujiki H 1999 Synergistic effects of (--)-epigallocatechin gallate with (--)-epicatechin, sulindac, or tamoxifen on cancer-preventive activity in the human lung cancer cell line PC-9. Cancer Res 59:44-47
114. Kuruto-Niwa R, Inoue S, Ogawa S, Muramatsu M, Nozawa R 2000 Effects of tea catechins on the ERE-regulated estrogenic activity. J Agric Food Chem 48:6355-6361
115. Sartippour MR, Pietras R, Marquez-Garban DC, Chen HW, Heber D, Henning SM, Sartippour G, Zhang L, Lu M, Weinberg O, Rao JY, Brooks MN 2006 The combination of green tea and tamoxifen is effective against breast cancer. Carcinogenesis 27:2424-2433
116. Axanova L, Morre DJ, Morre DM 2005 Growth of LNCaP cells in monoculture and coculture with osteoblasts and response to tNOX inhibitors. Cancer Lett 225:35-40
117. Masuda M, Suzui M, Lim JT, Weinstein IB 2003 Epigallocatechin-3-gallate inhibits activation of HER-2/neu and downstream signaling pathways in human head and neck and breast carcinoma cells. Clin Cancer Res 9:3486-3491
118. Malek NP, Sundberg H, McGrew S, Nakayama K, Kyriakides TR, Roberts JM 2001 A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kip1 in G1 and S phase. Nature 413:323-327
119. Hara T, Kamura T, Nakayama K, Oshikawa K, Hatakeyama S, Nakayama K 2001 Degradation of p27(Kip1) at the G(0)-G(1) transition mediated by a Skp2-independent ubiquitination pathway. J Biol Chem 276:48937-48943
120. Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM, Tindall DJ 2005 Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci U S A 102:1649-1654
121. Carrano AC, Eytan E, Hershko A, Pagano M 1999 SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1:193-199
122. Latres E, Chiarle R, Schulman BA, Pavletich NP, Pellicer A, Inghirami G, Pagano M 2001 Role of the F-box protein Skp2 in lymphomagenesis. Proc Natl Acad Sci U S A 98:2515-2520
123. Morabito A, Magnani E, Gion M, Sarmiento R, Capaccetti B, Longo R, Gattuso D, Gasparini G 2003 Prognostic and predictive indicators in operable breast cancer. Clin Breast Cancer 3:381-390
124. Kudo Y, Kitajima S, Ogawa I, Miyauchi M, Takata T 2005 Down-regulation of Cdk inhibitor p27 in oral squamous cell carcinoma. Oral Oncol 41:105-116
125. Zhu CQ, Blackhall FH, Pintilie M, Iyengar P, Liu N, Ho J, Chomiak T, Lau D, Winton T, Shepherd FA, Tsao MS 2004 Skp2 gene copy number aberrations are common in non-small cell lung carcinoma, and its overexpression in tumors with ras mutation is a poor prognostic marker. Clin Cancer Res 10:1984-1991
126. Kamata Y, Watanabe J, Nishimura Y, Arai T, Kawaguchi M, Hattori M, Obokata A, Kuramoto H 2005 High expression of skp2 correlates with poor prognosis in endometrial endometrioid adenocarcinoma. J Cancer Res Clin Oncol 131:591-596
127. Wang CX, Koay DC, Edwards A, Lu Z, Mor G, Ocal IT, Digiovanna MP 2005 In vitro and in vivo effects of combination of Trastuzumab (Herceptin) and Tamoxifen in breast cancer. Breast Cancer Res Treat 92:251-263
128. Ropero S, Menendez JA, Vazquez-Martin A, Montero S, Cortes-Funes H, Colomer R 2004 Trastuzumab plus tamoxifen: anti-proliferative and molecular interactions in breast carcinoma. Breast Cancer Res Treat 86:125-137
129. La Vecchia C, Decarli A, Negri E, Parazzini F 1988 Epidemiological aspects of diet and cancer: a summary review of case-control studies from northern Italy. Oncology 45:364-370
130. Tsugane S 2004 [Dietary factor and cancer risk--evidence from epidemiological studies]. Gan To Kagaku Ryoho 31:847-852
131. Park OJ, Surh YJ 2004 Chemopreventive potential of epigallocatechin gallate and genistein: evidence from epidemiological and laboratory studies. Toxicol Lett 150:43-56
132. Kaur M, Agarwal R 2007 Transcription factors: molecular targets for prostate cancer intervention by phytochemicals. Curr Cancer Drug Targets 7:355-367
133. Johnson IT 2007 Phytochemicals and cancer. Proc Nutr Soc 66:207-215
134. Huang HC, Way TD, Lin CL, Lin JK 2008 EGCG stabilizes p27kip1 in E2-stimulated MCF-7 cells through down-regulation of the Skp2 protein. Endocrinology 149:5972-5983
135. Zhao WH, Gao CC, Ma XF, Bai XY, Zhang YX 2007 The isolation of 1,2,3,4,6-penta-O-galloyl-beta-D-glucose from Acer truncatum Bunge by high-speed counter-current chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 850:523-527
136. Martinez-Dominguez E, de la Puerta R, Ruiz-Gutierrez V 2001 Protective effects upon experimental inflammation models of a polyphenol-supplemented virgin olive oil diet. Inflamm Res 50:102-106
137. Rudrappa T, Bais HP 2008 Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. J Agric Food Chem 56:1955-1962
138. Khachik F, Carvalho L, Bernstein PS, Muir GJ, Zhao DY, Katz NB 2002 Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Exp Biol Med (Maywood) 227:845-851
139. Saijo R, Nonaka G, Nishioka I 1989 Tannins and related compounds. LXXXIV. Isolation and characterization of five new hydrolyzable tannins from the bark of Mallotus japonicus. Chem Pharm Bull (Tokyo) 37:2063-2070
140. Clarke MJ 2008 WITHDRAWN: Tamoxifen for early breast cancer. Cochrane Database Syst Rev:CD000486
141. Sit KH, Bay BH, Wong KP 1993 Effect of genistein, a tyrosine-specific protein kinase inhibitor, on cell rounding by pH upshifting. In Vitro Cell Dev Biol Anim 29A:395-402
142. Tsihlias J, Kapusta L, Slingerland J 1999 The prognostic significance of altered cyclin-dependent kinase inhibitors in human cancer. Annu Rev Med 50:401-423
143. Wu J, Shen Z, Shao Z 1999 [Prognostic significance of cyclin-dependent kinase inhibitor p27kip1 expression in human breast cancer]. Zhonghua Zhong Liu Za Zhi 21:265-268
144. Katagiri Y, Hozumi Y, Kondo S 2006 Knockdown of Skp2 by siRNA inhibits melanoma cell growth in vitro and in vivo. J Dermatol Sci 42:215-224
145. Sun L, Cai L, Yu Y, Meng Q, Cheng X, Zhao Y, Sui G, Zhang F 2007 Knockdown of S-phase kinase-associated protein-2 expression in MCF-7 inhibits cell growth and enhances the cytotoxic effects of epirubicin. Acta Biochim Biophys Sin (Shanghai) 39:999-1007
146. Aggarwal BB, Banerjee S, Bharadwaj U, Sung B, Shishodia S, Sethi G 2007 Curcumin induces the degradation of cyclin E expression through ubiquitin-dependent pathway and up-regulates cyclin-dependent kinase inhibitors p21 and p27 in multiple human tumor cell lines. Biochem Pharmacol 73:1024-1032
147. Shao ZM, Shen ZZ, Liu CH, Sartippour MR, Go VL, Heber D, Nguyen M 2002 Curcumin exerts multiple suppressive effects on human breast carcinoma cells. Int J Cancer 98:234-240
148. Nahum A, Hirsch K, Danilenko M, Watts CK, Prall OW, Levy J, Sharoni Y 2001 Lycopene inhibition of cell cycle progression in breast and endometrial cancer cells is associated with reduction in cyclin D levels and retention of p27(Kip1) in the cyclin E-cdk2 complexes. Oncogene 20:3428-3436
149. Chen WJ, Chang CY, Lin JK 2003 Induction of G1 phase arrest in MCF human breast cancer cells by pentagalloylglucose through the down-regulation of CDK4 and CDK2 activities and up-regulation of the CDK inhibitors p27(Kip) and p21(Cip). Biochem Pharmacol 65:1777-1785
150. De S, Chakraborty RN, Ghosh S, Sengupta A, Das S 2004 Comparative evaluation of cancer chemopreventive efficacy of alpha-tocopherol and quercetin in a murine model. J Exp Clin Cancer Res 23:251-258
151. Surh YJ, Chun KS 2007 Cancer chemopreventive effects of curcumin. Adv Exp Med Biol 595:149-172
152. Bar-On O, Shapira M, Hershko DD 2007 Differential effects of doxorubicin treatment on cell cycle arrest and Skp2 expression in breast cancer cells. Anticancer Drugs 18:1113-1121
153. Ferlini C, Scambia G, Distefano M, Filippini P, Isola G, Riva A, Bombardelli E, Fattorossi A, Benedetti Panici P, Mancuso S 1997 Synergistic antiproliferative activity of tamoxifen and docetaxel on three oestrogen receptor-negative cancer cell lines is mediated by the induction of apoptosis. Br J Cancer 75:884-891
154. McDougal A, Wormke M, Calvin J, Safe S 2001 Tamoxifen-induced antitumorigenic/antiestrogenic action synergized by a selective aryl hydrocarbon receptor modulator. Cancer Res 61:3902-3907
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43412-
dc.description.abstract乳癌是女性最常見的癌症,死亡率在女性癌症中為第二位。藉由觀察乳癌腫瘤是否表現雌激素接受器(ER-positive)或是HER2蛋白質有無過度表現,可做為專一性治療的指標。標靶治療(Targeted therapy) 藥物tamoxifen 及Transtuzumab (herceptin)可分別用於治療雌激素接受器陽性或是HER2蛋白質過度表現的乳癌。然而並無專一性的藥物可用於治療雌激素接受器陰性及HER2陰性的乳癌。
第二型S週期激酶相關蛋白(S phase kinase-associated protein 2,Skp2)是一種原致癌基因(proto-oncoprotein),可藉由泛素(ubiquitin)參與來造成p27Kip1蛋白量下降。
在臨床研究中已證實,在雌激素接受器陰性及HER2陰性的乳癌中Skp2過度表現型佔很高的比例,約佔61-67%,而在雌激素接受器陽性的乳癌中Skp2也佔有相當高的比例,約佔15-23%。此外,Skp2過度表現會抑制抗雌激素(anti-estrogen)的作用,推測Skp2失去調控在抗雌激素治療無效的過程中可能扮演一個很重要的角色。因此,Skp2的過度表現可以當成預先診斷乳癌的生化指標,進一步可以發展出Skp2標靶治療藥物用於治療雌激素接受器陰性及HER2陰性和雌激素接受器陽性的乳癌病人。可惜的是目前並無專一性的標靶藥物可用於抑制Skp2的表現。
目前比較感興趣的是植化物(phytochemicals)用於乳癌的治療。流行病學研究結果已經顯示攝食蔬菜、水果及茶可以降低得癌症及罹患新血管疾病的風險,而蔬果當中主要成分植化物被認為是預防疾病最主要成分之一。這些研究結果顯示植化物可以當成癌症化學預防及化學治療的藥物。
在本文實驗中,我們評估在乳癌細胞中天然的植化物(例如:EGCG、 5gg、 quercetin、curcumin和lycopene)對skp2表現的影響。在本論文的第二章,我們評估在雌激素受體陽性反應的乳癌細胞MCF-7中EGCG對skp2的表現的影響。
我們發現在雌激素刺激的MCF-7細胞中不論是EGCG處理時間增加或是濃度增加都可以有效降低Skp2蛋白量,同時伴隨著p27Kip1的增加,推測EGCG可以抑制細胞生長主要是透過調控Skp2及p27Kip1蛋白量的表現。本論文是第一次證明EGCG可藉由調控Skp2蛋白量的表現進一步阻斷雌激素刺激的MCF-7細胞生長週期停止。有趣的是Skp2及p27Kip1 mRNA的表現量並不受到EGCG的影響。
此外,在MCF-7中過度表現Skp2可以避免p27Kip1蛋白量的增加,同時也可抑制EGCG造成細胞生長停止,由此結果推測Skp2是主要造成p27Kip1蛋白量增加的原因之一。進一步,我們發現EGCG併用抗癌藥物tamoxifen或是paclitaxel 具由協同加成的作用,可以更有效抑制抑Skp2的表現進一步抑制細胞生長。然而,EGCG併用抗癌藥物處理抑制Skp2的表現,但是並沒有同時促進p27Kip1蛋白量的增加,推測EGCG抑制Skp2的表現進而影響細胞生長可能透過很多不同的途徑。在臨床上抑制Skp2的表現可能是治療雌激素受體陽性反應乳癌很重要的一個分子標的。
在本論文的第三章,我們評估在ER/HER2-negative(MDA-MB-231)及 ER/HER2-positive breast (BT474)乳癌細胞中其它天然的植化物(例如: 5gg、 quercetin、 curcumin 和 lycopene)對skp2表現的影響。我們發現這四種植化物可以有效抑制MDA-MB-231細胞生長。其分子機制主要是藉由阻斷細胞生長週期進一步抑制細胞生長。5gg、 curcumin 和 lycopene 可以促使MDA-MB-231細胞停留在G1 時期,然而quercetin會促使細胞停留在G2時期。在BT474細胞中,5gg、 quercetin 和 lycopene可以促使細胞停留在G1時期及抑制細胞生長。相反的curcumin濃度在10μM以下並不會造成細胞生長週期停止及抑制細胞生長。進一步我們發現在MDA-MB-231細胞中quercetin和 curcumin可藉由抑制Skp2同時促進p27Kip1的增加而抑制細胞生長。然而,5gg 和 lycopene抑制Skp2的表現,但是並沒有同時促進p27Kip1蛋白量的增加。抑制Skp2的表現,並不一定會同時促進p27Kip1蛋白量的增加,我們推測抑制Skp2的表現進而影響細胞生長可能透過很多不同的途徑。
最近研究結果顯示植化物在疾病預防上扮演很重要的角色,然而其作用機制及其分子標的等等還不是很清楚。在本論文中我們提供一個新的機制探討,發現植化物可藉由調控Skp2的表現進一步影響乳癌細胞生長週期。由這些結果也說明了植化物在疾病預防上的作用機制及其分子標的,其望藉由本論文的研究結果,未來能夠提供化學預防臨床試驗一些資訊,使癌症化學預防有更多的選擇。
zh_TW
dc.description.abstractBreast cancer is the most common cancer in women and the second leading cause of cancer-related deaths in women. Estrogen receptor (ER) expression and HER2 amplification define specific subsets of breast tumors for which specific therapies exist. Targeted therapy with tamoxifen and trastuzumab (herceptin) is available for estrogen receptor–positive (ER-positive) and HER2–overexpressing breast tumors, respectively. However, no specific therapy has been identified in those tumors that are both ER and HER2 negative.
The S-phase kinase-associated protein Skp2 is required for the ubiquitin mediated degradation of p27Kip1 and is a proto-oncoprotein. Clinical studies have demonstrated that Skp2 is highly expressed in 61–67% of the ER/HER2-negative tumors, and it is also expressed at higher levels in 15% - 23% of the ER-positive tumors. Additionally, overexpression of Skp2 abolished effects of antiestrogens, suggesting that deregulated Skp2 expression might play a role in the development of resistance to antiestrogens. Thus, Skp2 is desirable to identify prognostic biomarkers to aid in the development of targeted therapeutic strategies for ER/HER2-negative and ER-positive breast cancers. Unfortunately, specific drugs that target Skp2 are unavailable at present.
There has been considerable interest in the use of phytochemicals for the treatment of breast cancer. Epidemiological studies have shown that the consumption of vegetable, fruits and tea is associated with a decreased risk of cancer and cardiovascular diseases, and phytochemicals are believed to play an important role in preventing these diseases. These data indicate that certain phytochemicals may be used as possible chemoprotective or chemotherapeutic agents.
In the present study we examined the effect of natural phytochemicals, such as EGCG, 5gg, quercetin, curcumin, and lycopene, on Skp2 gene expression in breast cancer cells. In chapter II, we examined the effect of EGCG on Skp2 gene expression in ER-positive breast cancer cells. We found that EGCG, the main constituent of green tea, increased p27Kip1 and decreased Skp2 in a time- and dose-dependent manner, suggesting that p27Kip1 and Skp2 may be involved in the growth inhibition by EGCG in estrogen-stimulated MCF-7 cells. We demonstrated here for the first time that Skp2 is required for EGCG-induced cell cycle arrest in estrogen-stimulated MCF-7 cells. Interestingly, mRNA levels of p27 Kip1 and Skp2 did not significant change in estrogen-stimulated MCF-7 cells following EGCG treatments. Moreover, overexpression of Skp2 in MCF-7 cells prevented accumulation of p27 Kip1 and promoted resistance to the antiproliferative effects of EGCG. This suggests that the downregulation of the F-box protein Skp2 is the mechanism underlying p27 Kip1 accumulation. Furthermore, both tamoxifen and paclitaxel significantly and synergistically enhanced the growth inhibition of MCF-7 cells by EGCG through the downregulation of Skp2 protein. However, the downregulation of Skp2 was not always correlate with the upregulation of p27 Kip1, suggesting that EGCG dependent Skp2 downregulation can influence on cell growth in several ways. The therapeutic strategies designed to reduce Skp2 may therefore play an important clinical role in treatment of ER -positive breast cancer cells.
In chapter III, we examined the effect of other natural phytochemicals, such as 5gg, quercetin, curcumin, and lycopene, on Skp2 gene expression in ER/HER2-negative(MDA-MB-231) and ER/HER2-positive breast (BT474) cancer cells. We found that all of the 4 phytochemicals induced cell growth inhibition in MDA-MB-231 cells. The mechanism of the initial growth inhibitory events is by blocking the the cell cycle progression. 5gg, curcumin and lycopene induced G1 phase arrest while quercetin caused G2M phase arrest. In BT474 cells, 5gg, quercetin and lycopene induced G1 phase arrest and cell growth inhibition. In contrast, curcumin at < 10μM did not induce G1 phase arrest and cell growth inhibition. Further, we found that quercetin and curcumin induces growth arrest by inhibition of Skp2, and induced p27 Kip1 expression in MDA-MB-231 cells. However, the decrease in Skp2 levels in cells treated with 5gg or lycopene did not translate to p27Kip1 upregulation. The downregulation of Skp2 was not always correlate with the upregulation of p27Kip1, suggesting that phytochemicals dependent Skp2 downregulation can influence on cell growth in several ways. Recent studies have demonstrated that despite the lack of changes in p27Kip1, Skp2 levels were independently associated with a significantly better disease-free survival. This supports the concept that Skp2 has other important oncogenic effects and that reduction in Skp2 levels is a rational therapeutic objective.
Recent studies demonstrate that phytochemicals can protect humans against disease and how phytochemicals interfere with this mechanism is still unclear. In this dissertation, our findings provide additional insights into the mechanisms of action of phytochemicals on cell cycle arrest in breast cancer cells through direct down-regulation of Skp2 expression. The results presented here indicate that these phytochemicals are of potential value for the chemoprevention of breast cancer. However, our preclinical research might promising and ready for further study in clinical chemopreventive trials.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:55:11Z (GMT). No. of bitstreams: 1
ntu-98-D94442004-1.pdf: 12604274 bytes, checksum: 4d5cf3aff6012621f3c067e612a64b07 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents誌謝…………………………………………………………………i
中文摘要……………………………………………………………ii
Abstract ……………………………………………………………v
Abbreviations ....................................................................................ix
Table of Contents..............................................................................i
Chapter I - Overview and Rationale …………………………………………1
1.1. Breast cancer…...………………………………………………………1
1.1.1. Role of the Skp2 and p27 in human breast cancer……………………2
1.1.2. Prognostic impact of Skp2 and p27 in human breast cancer……………3
1.1.3. Treatments of breast cancer……………………………………………5
1.2. Cancer chemoprevention…………………………………………………6
1.2.1. Mechanisms of breast cancer chemoprevention…………………………8
1.2.2. Phytochemicals…………………………………………………………9
1.2.3. Flavonoids………………………………………………………………10
1.2.4. Phytoestrogens …………………………………………………………12
1.3. Molecular Targets of Phytochemicals for Prevention of Breast Cancer…… 13
1.3.1 Therapeutic strategies directed at ERα…………………………………13
1.3.2 Therapeutic strategies directed at HER2………………………………………14
1.3.3. Skp2 as a novel Target for breast cancer therapy: Rationale for Therapy……16
Chapter II - Epigallocatechin gallate (EGCG) stabilizes p27kip1 in estrogen- stimulated MCF-7 cells through downregulation of the Skp2 protein……………………….19
2.1. Summary………………………………………………………………20
2.2. Introduction …………………………………………………………… 21
2.3. Material and methods ………………………………………………… 23
2.4. Results .……………………………………………………………… 29
2.5. Discussion ……………………………………………………………37
2.6. List of Figures …………………………………………………………42
Chapter III - Phytochemicals induces cell-cycle arrest in MDA-MB-231 and BT474 breast cancer cells through downregulation of the Skp2 protein ……… ……66
3.1. Summary…………………………………………………………………67
3.2. Introduction ………………………………………………………………68
3.3. Material and methods …………………………………………………… 71
3.4. Results ……………………………………………………………………75
3.5. Discussion ……………………………………………………………… 80
3.6. List of Figures ……………………………………………………………84
Reference lists ………………………………………………………………100
Vita …………………………………………………………………………121
Appendix……………………………………………………………………123
dc.language.isoen
dc.subject相關蛋白zh_TW
dc.subject植化物zh_TW
dc.subject乳癌zh_TW
dc.subject雌激素zh_TW
dc.subject第二型S週期激&#37238zh_TW
dc.subjectestrogenen
dc.subjectphytochemicalsen
dc.subjectBreast canceren
dc.subjectphase kinase-associated protein 2en
dc.title植化物抑制Skp2過度表現乳癌細胞生長機制之研究zh_TW
dc.titleStudies on the action mechanisms of phytochemicals inhibiting Skp2-overexpression in breast cancer cell growthen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee鍾景光(Jing-Gung Chung),李宣佑(Shuan-Yow Li),王朝鐘(Chau-Jong Wang),周明勇(Ming-Yung Chou),何元順(Ho Yuan-Soon),陳彥州(Yen-Chou Chen),周綠蘋(Lu-Ping Chow)
dc.subject.keyword植化物,乳癌,雌激素,第二型S週期激&#37238,相關蛋白,zh_TW
dc.subject.keywordphytochemicals,Breast cancer,estrogen,phase kinase-associated protein 2,en
dc.relation.page123
dc.rights.note有償授權
dc.date.accepted2009-06-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
12.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved