Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43387Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張國柱 | |
| dc.contributor.author | Chih-Yao Yu | en |
| dc.contributor.author | 余芝瑤 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:53:34Z | - |
| dc.date.available | 2009-09-15 | |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-01 | |
| dc.identifier.citation | Anurag, P. and Anuradha, C. V. (2002). 'Metformin improves lipid metabolism and attenuates lipid peroxidation in high fructose-fed rats.' Diabetes Obesity Metab. 4: 36-42.
Ardestani, A. and Yazdanparast, R. (2007). 'Cyperus rotundus suppresses AGE formation and protein oxidation in a model of fructose-mediated protein glycoxidation.' Int J Biol Macromol 41(5): 572-8. Armutcu, F., Coskun, O., Gurel, A., Kanter, M., Can, M., Ucar, F. and Unalacak, M. (2005). 'Thymosin alpha 1 attenuates lipid peroxidation and improves fructose-induced steatohepatitis in rats.' Clin Biochem 38(6): 540-7. Asmar, R., Gosse, P., Topouchian, J., N'Tela, G., Dudley, A. and Shepherd, G. L. (2002). 'Effects of telmisartan on arterial stiffness in Type 2 diabetes patients with essential hypertension.' J Renin Angiotensin Aldosterone Syst 3(3): 176-80. Baynes, J. W. (1991). 'Role of oxidative stress in development of complications in diabetes.' Diabetes 40(4): 405-12. Bray, G. A., Nielsen, S. J. and Popkin, B. M. (2004). 'Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity.' Am J Clin Nutr 79(4): 537-43. Brown, N. J. and Vaughan, D. E. (2000). 'Prothrombotic effects of angiotensin.' Adv Intern Med 45: 419-29. Bruel, A. and Oxlund, H. (1996). 'Changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age.' Atherosclerosis 127(2): 155-65. Bucala, R., Makita, Z., Vega, G., Grundy, S., Koschinsky, T., Cerami, A. and Vlassara, H. (1994). 'Modification of low density lipoprotein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency.' Proc Natl Acad Sci U S A 91(20): 9441-5. Burattini, R., Fioretti, S. and Jetto, L. (1985). 'A simple algorithm for defining the mean cardiac cycle of aortic flow and pressure during steady state.' Comput Biomed Res 18: 303-312. Carl, J. and Wilmer, W. (1982). 'Aortic input impedance in cardiovascular disease.' Prog Cardiovasc Dis 4: 307-318. Chang, K. C., Hsu, K. L. and Tseng, Y. Z. (2003). 'Effects of diabetes and gender on mechanical properties of the arterial system in rats: aortic impedance analysis.' Exp Biol Med (Maywood) 228(1): 70-8. Cheetham, C., O'Driscoll, G., Stanton, K., Taylor, R. and Green, D. (2001). 'Losartan, an angiotensin type I receptor antagonist, improves conduit vessel endothelial function in Type II diabetes.' Clin Sci (Lond) 100(1): 13-7. Chirieac, D. V., Chirieac, L. R., Corsetti, J. P., Cianci, J., Sparks, C. E. and Sparks, J. D. (2000). 'Glucose-stimulated insulin secretion suppresses hepatic triglyceride-rich lipoprotein and apoB production.' Am J Physiol Endocrinol Metab 279(5): E1003-11. Cooper, S. A., Whaley-Connell, A., Habibi, J., Wei, Y., Lastra, G., Manrique, C., Stas, S. and Sowers, J. R. (2007). 'Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance.' Am J Physiol Heart Circ Physiol 293(4): H2009-23. Cruickshank, K., Riste, L., Anderson, S. G., Wright, J. S., Dunn, G. and Gosling, R. G. (2002). 'Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function?' Circulation 106(16): 2085-90. Dai, S. and McNeill, J. H. (1995). 'Fructose-induced hypertension in rats is concentration- and duration-dependent.' J Pharmacol Toxicol Methods 33(2): 101-7. DeGasparo, M. (2002). 'Angiotensin II and nitric oxide interaction.' Heart Fail Rev 7(4): 347-58. DeFronzo, R. A. (1988). 'Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM.' Diabetes 37(6): 667-87. Degenhardt, T. P., Alderson, N. L., Arrington, D. D., Beattie, R. J., Basgen, J. M., Steffes, M. W., Thorpe, S. R. and Baynes, J. W. (2002). 'Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat.' Kidney Int 61(3): 939-50. Delbosc, S., Paizanis, E., Magous, R., Araiz, C., Dimo, T., Cristol, J. P., Cros, G. and Azay, J. (2005). 'Involvement of oxidative stress and NADPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed rat.' Atherosclerosis 179(1): 43-9. Dhalla, N. S., Temsah, R. M. and Netticadan, T. (2000). 'Role of oxidative stress in cardiovascular diseases.' J Hypertens 18(6): 655-73. Dhar, A., Desai, K., Kazachmov, M., Yu, P. and Wu, L. (2008). 'Methylglyoxal production in vascular smooth muscle cells from different metabolic precursors.' Metabolism 57(9): 1211-20. Dzau, V. J. (2001). 'Theodore Cooper Lecture: Tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis.' Hypertension 37(4): 1047-52. Dzau, V. J. and Re, R. (1994). 'Tissue angiotensin system in cardiovascular medicine. A paradigm shift?' Circulation 89(1): 493-8. Elliott, S. S., Keim, N. L., Stern, J. S., Teff, K. and Havel, P. J. (2002). 'Fructose, weight gain, and the insulin resistance syndrome.' Am J Clin Nutr 76(5): 911-22. Esterbauer, H., Koller, E., Slee, R. G. and Koster, J. F. (1986). 'Possible involvement of the lipid-peroxidation product 4-hydroxynonenal in the formation of fluorescent chromolipids.' Biochem J 239(2): 405-9. Faure, P., Rossini, E., Lafond, J. L., Richard, M. J., Favier, A. and Halimi, S. (1997). 'Vitamin E improves the free radical defense system potential and insulin sensitivity of rats fed high fructose diets.' J Nutr 127(1): 103-7. Fishbane, S., Bucala, R., Pereira, B. J., Founds, H. and Vlassara, H. (1997). 'Reduction of plasma apolipoprotein-B by effective removal of circulating glycation derivatives in uremia.' Kidney Int 52(6): 1645-50. Fitch, R. M., Vergona, R., Sullivan, M. E. and Wang, Y. X. (2001). 'Nitric oxide synthase inhibition increases aortic stiffness measured by pulse wave velocity in rats.' Cardiovasc Res 51(2): 351-8. Folli, F., Saad, M. J., Velloso, L., Hansen, H., Carandente, O., Feener, E. P. and Kahn, C. R. (1999). 'Crosstalk between insulin and angiotensin II signalling systems.' Exp Clin Endocrinol Diabetes 107(2): 133-9. Furuhashi, M., Ura, N., Higashiura, K., Murakami, H., Tanaka, M., Moniwa, N., Yoshida, D. and Shimamoto, K. (2003). 'Blockade of the renin-angiotensin system increases adiponectin concentrations in patients with essential hypertension.' Hypertension 42(1): 76-81. Ganda, O. P., Soeldner, J. S., Gleason, R. E., Cleator, I. G. and Reynolds, C. (1979). 'Metabolic effects of glucose, mannose, galactose, and fructose in man.' J Clin Endocrinol Metab 49(4): 616-22. Ginsberg, H. N., Zhang, Y. L. and Hernandez-Ono, A. (2005). 'Regulation of plasma triglycerides in insulin resistance and diabetes.' Arch Med Res 36(3): 232-40. Girotti, A. W. (1985). 'Mechanisms of lipid peroxidation.' J Free Radic Biol Med 1(2): 87-95. Goldin, A., Beckman, J. A., Schmidt, A. M. and Creager, M. A. (2006). 'Advanced glycation end products: sparking the development of diabetic vascular injury.' Circulation 114(6): 597-605. Griendling, K. K. and Ushio-Fukai, M. (2000). 'Reactive oxygen species as mediators of angiotensin II signaling.' Regul Pept 91(1-3): 21-7. Hansen, E., Hajri, T. and Abumrad, N. N. (2006). 'Is all fat the same? The role of fat in the pathogenesis of the metabolic syndrome and type 2 diabetes mellitus.' Surgery 139(6): 711-6. Havel, P. J. (2005). 'Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism.' Nutr Rev 63(5): 133-57. Henriksen, E. J., Jacob, S., Kinnick, T. R., Teachey, M. K. and Krekler, M. (2001). 'Selective angiotensin II receptor receptor antagonism reduces insulin resistance in obese Zucker rats.' Hypertension 38(4): 884-90. Higashiura, K., Ura, N., Takada, T., Li, Y., Torii, T., Togashi, N., Takada, M., Takizawa, H. and Shimamoto, K. (2000). 'The effects of an angiotensin-converting enzyme inhibitor and an angiotensin II receptor antagonist on insulin resistance in fructose-fed rats.' Am J Hypertens 13(3): 290-7. Hochstein, P. and Ernster, L. (1963). 'Adp-Activated Lipid Peroxidation Coupled to the Tpnh Oxidase System of Microsomes.' Biochem Biophys Res Commun 12: 388-94. Hollenbeck, C. and Reaven, G. M. (1987). 'Variations in insulin-stimulated glucose uptake in healthy individuals with normal glucose tolerance.' J Clin Endocrinol Metab 64(6): 1169-73. Horiuchi, M., Akishita, M. and Dzau, V. J. (1999). 'Recent progress in angiotensin II type 2 receptor research in the cardiovascular system.' Hypertension 33(2): 613-21. Hotta, K., Funahashi, T., Bodkin, N. L., Ortmeyer, H. K., Arita, Y., Hansen, B. C. and Matsuzawa, Y. (2001). 'Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys.' Diabetes 50(5): 1126-33. Huebschmann, A. G., Regensteiner, J. G., Vlassara, H. and Reusch, J. E. (2006). 'Diabetes and advanced glycoxidation end products.' Diabetes Care 29(6): 1420-32. Iimura, O., Shimamoto, K., Matsuda, K., Masuda, A., Takizawa, H., Higashiura, K., Miyazaki, Y., Hirata, A., Ura, N. and Nakagawa, M. (1995). 'Effects of angiotensin receptor antagonist and angiotensin converting enzyme inhibitor on insulin sensitivity in fructose-fed hypertensive rats and essential hypertensives.' Am J Hypertens 8(4 Pt 1): 353-7. Kamide, K., Hori, M. T., Zhu, J. H., Barrett, J. D., Eggena, P. and Tuck, M. L. (1998). 'Insulin-mediated growth in aortic smooth muscle and the vascular renin-angiotensin system.' Hypertension 32(3): 482-7. Kaplan, M. and Aviram, M. (1999). 'Oxidized low density lipoprotein: atherogenic and proinflammatory characteristics during macrophage foam cell formation. An inhibitory role for nutritional antioxidants and serum paraoxonase.' Clin Chem Lab Med 37(8): 777-87. Kashiwagi, A., Shinozaki, K., Nishio, Y., Okamura, T., Toda, N. and Kikkawa, R. (1999). 'Free radical production in endothelial cells as a pathogenetic factor for vascular dysfunction in the insulin resistance state.' Diabetes Res Clin Pract 45(2-3): 199-203. Kimoto, E., Shoji, T., Shinohara, K., Inaba, M., Okuno, Y., Miki, T., Koyama, H., Emoto, M. and Nishizawa, Y. (2003). 'Preferential stiffening of central over peripheral arteries in type 2 diabetes.' Diabetes 52(2): 448-52. Knowler, W. C., Barrett-Connor, E., Fowler, S. E., Hamman, R. F., Lachin, J. M., Walker, E. A. and Nathan, D. M. (2002). 'Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.' N Engl J Med 346(6): 393-403. Koechlin, B. (1952). 'Preparation and properties of serum and plasma proteins. The J Am Chemmetal-combining proteins of human plasma.' J Am Chem 74: 2629-2653. Koike, H., Sada, T. and Mizuno, M. (2001). 'In vitro and in vivo pharmacology of olmesartan medoxomil, an angiotensin II type AT1 receptor antagonist.' J Hypertens Suppl 19(1): S3-14. Laxminarayan, S., Sipkema, P. and Westerhof, N. (1978). 'Characterization of the arterial system in the time-domain.' IEEE Trans Piomed Eng 25: 177-184. Le, K. A. and Tappy, L. (2006). 'Metabolic effects of fructose.' Curr Opin Clin Nutr Metab Care 9(4): 469-75. Lim, S. C., Caballero, A. E., Smakowski, P., LoGerfo, F. W., Horton, E. S. and Veves, A. (1999). 'Soluble intercellular adhesion molecule, vascular cell adhesion molecule, and impaired microvascular reactivity are early markers of vasculopathy in type 2 diabetic individuals without microalbuminuria.' Diabetes Care 22(11): 1865-70. Lin, Y. T., Tseng, Y. Z. and Chang, K. C. (2004). 'Aminoguanidine prevents fructose-induced arterial stiffening in Wistar rats: aortic impedance analysis.' Exp Biol Med (Maywood) 229(10): 1038-45. Liu, Z., Brin, K. and Yin, F. (1986). 'Estimation of total arterier compliance: an improved method and evaluation of current methods.' Am J Physiol 251: H588-H600. Lorenzo, C., Okoloise, M., Williams, K., Stern, M. P. and Haffner, S. M. (2003). 'The metabolic syndrome as predictor of type 2 diabetes: the San Antonio heart study.' Diabetes Care 26(11): 3153-9. Mayes, P. A. (1993). 'Intermediary metabolism of fructose.' Am J Clin Nutr 58(5 Suppl): 754S-765S. McEniery, C. M., Qasem, A., Schmitt, M., Avolio, A. P., Cockcroft, J. R. and Wilkinson, I. B. (2003). 'Endothelin-1 regulates arterial pulse wave velocity in vivo.' J Am Coll Cardiol 42(11): 1975-81. McVeigh, G. E., Allen, P. B., Morgan, D. R., Hanratty, C. G. and Silke, B. (2001). 'Nitric oxide modulation of blood vessel tone identified by arterial waveform analysis.' Clin Sci (Lond) 100(4): 387-93. Mikulikova, K., Eckhardt, A., Kunes, J., Zicha, J. and Miksik, I. (2008). 'Advanced glycation end-product pentosidine accumulates in various tissues of rats with high fructose intake.' Physiol Res 57(1): 89-94. Milnor, W. R. (1975). 'Arterial impedance as ventricular afterload.' Circ Res 36: 565-570. Milnor, W. R. (1989). Hemodynamics. Baltimore, Williams & Wilkins Co. Mitchell, G., Pfeffer, M., Westeshof, N. and Pfeffer, J. (1994). 'Measurement of aortic imput impedance in rats.' Am J Physiol 267: H1907-H1915. Miyata, T. and van Ypersele de Strihou, C. (2003). 'Angiotensin II receptor blockers and angiotensin converting enzyme inhibitors: implication of radical scavenging and transition metal chelation in inhibition of advanced glycation end product formation.' Arch Biochem Biophys 419(1): 50-4. Miyata, T., van Ypersele de Strihou, C., Ueda, Y., Ichimori, K., Inagi, R., Onogi, H., Ishikawa, N., Nangaku, M. and Kurokawa, K. (2002). 'Angiotensin II receptor antagonists and angiotensin-converting enzyme inhibitors lower in vitro the formation of advanced glycation end products: biochemical mechanisms.' J Am Soc Nephrol 13(10): 2478-87. Miyazaki, M. and Takai, S. (2002). 'Anti-atherosclerotic efficacy of olmesartan.' J Hum Hypertens 16 Suppl 2: S7-12. Miyazaki, Y., Murakami, H., Hirata, A., Fukuoka, M., Masuda, A., Ura, N. and Shimamoto, K. (1998). 'Effects of the angiotensin converting enzyme inhibitor temocapril on insulin sensitivity and its effects on renal sodium handling and the pressor system in essential hypertensive patients.' Am J Hypertens 11(8 Pt 1): 962-70. Mizuno, M., Sada, T., Kato, M. and Koike, H. (2002). 'Renoprotective effects of blockade of angiotensin II AT1 receptors in an animal model of type 2 diabetes.' Hypertens Res 25(2): 271-8. Monnier, V. M. (2001). 'Transition metals redox: reviving an old plot for diabetic vascular disease.' J Clin Invest 107(7): 799-801. Nakamura, Y., Horii, Y., Nishino, T., Shiiki, H., Sakaguchi, Y., Kagoshima, T., Dohi, K., Makita, Z., Vlassara, H. and Bucala, R. (1993). 'Immunohistochemical localization of advanced glycosylation end products in coronary atheroma and cardiac tissue in diabetes mellitus.' Am J Pathol 143(6): 1649-56. Namikoshi, T., Tomita, N., Satoh, M., Haruna, Y., Kobayashi, S., Komai, N., Sasaki, T. and Kashihara, N. (2007). 'Olmesartan ameliorates renovascular injury and oxidative stress in Zucker obese rats enhanced by dietary protein.' Am J Hypertens 20(10): 1085-91. Nass, N., Bartling, B., Navarrete Santos, A., Scheubel, R. J., Borgermann, J., Silber, R. E. and Simm, A. (2007). 'Advanced glycation end products, diabetes and ageing.' Z Gerontol Geriatr 40(5): 349-56. Neeper, M., Schmidt, A. M., Brett, J., Yan, S. D., Wang, F., Pan, Y. C., Elliston, K., Stern, D. and Shaw, A. (1992). 'Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins.' J Biol Chem 267(21): 14998-5004. Nichols, W., Conti, C. and Walker, W. (1977). 'input impedance of the systemic circulation in man.' Circ Res 40: 451-460. Nichols, W., Pepine, C. and Geiser, E. (1980). 'Vascular load defined by the aortic input impedance spectrum.' Fed Proc 39: 196-210. Nichols, W. and O'Rourke, M. F. (1998). McDonald's Blood Flow in Arteries. London, Arnold. Nickenig, G., Roling, J., Strehlow, K., Schnabel, P. and Bohm, M. (1998). 'Insulin induces upregulation of vascular AT1 receptor gene expression by posttranscriptional mechanisms.' Circulation 98(22): 2453-60. Noble, M., Gade, I. and Frenchard, D. (1976). 'Blood pressure and flow in the ascending aorta of conscious dogs.' Cardiovasc Res 1: 9-21. O'Rourke, M. F., Avolio, A. P. and Nichols, W. W. (1987). Left ventricular-systemic arterial coupling in humans and strategies to improve coupling in disease states. Ventricular / Vascular Coupling. Yin, F. C. P. New York, Springer-Verlag: 1-19. Okada, K., Hirano, T., Ran, J. and Adachi, M. (2004). 'Olmesartan medoxomil, an angiotensin II receptor blocker ameliorates insulin resistance and decreases triglyceride production in fructose-fed rats.' Hypertens Res 27(4): 293-9. Pan, X. R., Li, G. W., Hu, Y. H., Wang, J. X., Yang, W. Y., An, Z. X., Hu, Z. X., Lin, J., Xiao, J. Z., Cao, H. B., Liu, P. A., Jiang, X. G., Jiang, Y. Y., Wang, J. P., Zheng, H., Zhang, H., Bennett, P. H. and Howard, B. V. (1997). 'Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study.' Diabetes Care 20(4): 537-44. Prasad, A., Tupas-Habib, T., Schenke, W. H., Mincemoyer, R., Panza, J. A., Waclawin, M. A., Ellahham, S. and Quyyumi, A. A. (2000). 'Acute and chronic angiotensin-1 receptor antagonism reverses endothelial dysfunction in atherosclerosis.' Circulation 101(20): 2349-54. Price, D. L., Rhett, P. M., Thorpe, S. R. and Baynes, J. W. (2001). 'Chelating activity of advanced glycation end-product inhibitors.' J Biol Chem 276(52): 48967-72. Qin, B., Qiu, W., Avramoglu, R. K. and Adeli, K. (2007). 'Tumor necrosis factor-alpha induces intestinal insulin resistance and stimulates the overproduction of intestinal apolipoprotein B48-containing lipoproteins.' Diabetes 56(2): 450-61. Rahbar, S. (2007). 'Novel inhibitors of glycation and AGE formation.' Cell Biochem Biophys 48(2-3): 147-57. Ran, J., Hirano, T. and Adachi, M. (2004). 'Angiotensin II type 1 receptor blocker ameliorates overproduction and accumulation of triglyceride in the liver of Zucker fatty rats.' Am J Physiol Endocrinol Metab 287(2): E227-32. Rayssiguier, Y., Gueux, E., Nowacki, W., Rock, E. and Mazur, A. (2006). 'High fructose consumption combined with low dietary magnesium intake may increase the incidence of the metabolic syndrome by inducing inflammation.' Magnes Res 19(4): 237-43. Reaven, G. M. (1988). 'Role of insulin resistance in human disease.' Diabetes 37: 1495-1607. Reaven, G. M. (1995). 'The fourth musketeer--from Alexandre Dumas to Claude Bernard.' Diabetologia 38(1): 3-13. Reaven, G. M., Brand, R. J., Chen, Y. D., Mathur, A. K. and Goldfine, I. (1993). 'Insulin resistance and insulin secretion are determinants of oral glucose tolerance in normal individuals.' Diabetes 42(9): 1324-32. Reaven, G. M., Hollenbeck, C. B. and Chen, Y. D. (1989). 'Relationship between glucose tolerance, insulin secretion, and insulin action in non-obese individuals with varying degrees of glucose tolerance.' Diabetologia 32(1): 52-5. Reaven, G. M. and Laws, A. (1994). 'Insulin resistance, compensatory hyperinsulinaemia, and coronary heart disease.' Diabetologia 37(9): 948-52. Rehman, A., Rahman, A. R., Rasool, A. H. and Naing, N. N. (2001). 'The effects of angiotensin II on pulse wave velocity in healthy humans.' Int J Clin Pharmacol Ther 39(10): 423-30. Resnick, L. M., Catanzaro, D., Sealey, J. E. and Laragh, J. H. (2004). 'Acute vascular effects of the angiotensin II receptor antagonist olmesartan in normal subjects: relation to the renin-aldosterone system.' Am J Hypertens 17(3): 203-8. Roglans, N., Vila, L., Farre, M., Alegret, M., Sanchez, R. M., Vazquez-Carrera, M. and Laguna, J. C. (2007). 'Impairment of hepatic Stat-3 activation and reduction of PPARalpha activity in fructose-fed rats.' Hepatology 45(3): 778-88. Ross, J., Covell, J., Sonnenbuck, E. and Braunwald, E. (1966). 'contractiloe state of the heart charecterized by force-velocity relations in variable afterload and isovolumic beats.' Circ Res 18: 149-163. Ross, R. (1993). 'The pathogenesis of atherosclerosis: a perspective for the 1990s.' Nature 362(6423): 801-9. Rutledge, A. C. and Adeli, K. (2007). 'Fructose and the metabolic syndrome: pathophysiology and molecular mechanisms.' Nutr Rev 65(6 Pt 2): S13-23. Schwartz, M. W., Baskin, D. G., Kaiyala, K. J. and Woods, S. C. (1999). 'Model for the regulation of energy balance and adiposity by the central nervous system.' Am J Clin Nutr 69(4): 584-96. Searles, C. D. and Harrison, D. G. (1999). 'The interaction of nitric oxide, bradykinin, and the angiotensin II type 2 receptor: lessons learned from transgenic mice.' J Clin Invest 104(8): 1013-4. Shimamoto, K. and Ura, N. (2006). 'Mechanisms of insulin resistance in hypertensive rats.' Clin Exp Hypertens 28(6): 543-52. Simpson, P. C., Kariya, K., Karns, L. R., Long, C. S. and Karliner, J. S. (1991). 'Adrenergic hormones and control of cardiac myocyte growth.' Mol Cell Biochem 75: 977-984. Singh, R., Barden, A., Mori, T. and Beilin, L. (2001). 'Advanced glycation end-products: a review.' Diabetologia 44(2): 129-46. Sipkema, P., Westerhof, N. and Randall, O. S. (1980). 'The arterial system characterised in the time domain.' Cardiovasc Res 14(5): 270-9. Siragy, H. M. (2000). 'AT(1) and AT(2) receptors in the kidney: role in disease and treatment.' Am J Kidney Dis 36(3 Suppl 1): S4-9. Siragy, H. M. and Carey, R. M. (2001). 'Angiotensin type 2 receptors: potential importance in the regulation of blood pressure.' Curr Opin Nephrol Hypertens 10(1): 99-103. Siu, G. M. and Draper, H. H. (1982). 'Metabolism of malonaldehyde in vivo and in vitro.' Lipids 17(5): 349-55. Son, D., Hutchings, S. and Pang, C. C. (2005). 'Chronic N-acetylcysteine prevents fructoseinduced insulin resistance and hypertension in rats.' Eur J Pharmacol 508: 205-210. Stehouwer, C. D., Henry, R. M. and Ferreira, I. (2008). 'Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease.' Diabetologia 51(4): 527-39. Stehouwer, C. D., Nauta, J. J., Zeldenrust, G. C., Hackeng, W. H., Donker, A. J. and den Ottolander, G. J. (1992). 'Urinary albumin excretion, cardiovascular disease, and endothelial dysfunction in non-insulin-dependent diabetes mellitus.' Lancet 340(8815): 319-23. Stumvoll, M., Goldstein, B. J. and van Haeften, T. W. (2005). 'Type 2 diabetes: principles of pathogenesis and therapy.' Lancet 365(9467): 1333-46. Takahashi, T., Konta, T., Takasaki, S., Ichikawa, K., Takeishi, Y. and Kubota, I. (2007). 'An angiotensin II type-I receptor blocker, olmesartan medoxomil, attenuates lipid peroxidation in renal injury induced by subtotal nephrectomy.' Clin Exp Nephrol 11(3): 202-8. Tanaka, N., Yonekura, H., Yamagishi, S., Fujimori, H., Yamamoto, Y. and Yamamoto, H. (2000). 'The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor-alpha through nuclear factor-kappa B, and by 17beta-estradiol through Sp-1 in human vascular endothelial cells.' J Biol Chem 275(33): 25781-90. Teff, K. L., Elliott, S. S., Tschop, M., Kieffer, T. J., Rader, D., Heiman, M., Townsend, R. R., Keim, N. L., D'Alessio, D. and Havel, P. J. (2004). 'Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women.' J Clin Endocrinol Metab 89(6): 2963-72. Thirunavukkarasu, V., Anitha Nandhini, A. T. and Anuradha, C. V. (2004). 'Cardiac lipids and antioxidant status in high fructose rats and the effect of alpha-lipoic acid.' Nutr Metab Cardiovasc Dis 14(6): 351-7. Thorburn, A. W., Storlien, L. H., Jenkins, A. B., Khouri, S. and Kraegen, E. W. (1989). 'Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats.' Am J Clin Nutr 49(6): 1155-63. Thornalley, P. J. (1998). 'Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs.' Cell Mol Biol (Noisy-le-grand) 44(7): 1013-23. Thornalley, P. J., Langborg, A. and Minhas, H. S. (1999). 'Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose.' Biochem J 344 Pt 1: 109-16. Tobey, T. A., Mondon, C. E., Zavaroni, I. and Reaven, G. M. (1982). 'Mechanism of insulin resistance in fructose-fed rats.' Metabolism 31(6): 608-12. Touyz, R. M. and Schiffrin, E. L. (2000). 'Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells.' Pharmacol Rev 52(4): 639-72. Tuck, M. L., Bounoua, F., Eslami, P., Nyby, M. D., Eggena, P. and Corry, D. B. (2004). 'Insulin stimulates endogenous angiotensin II production via a mitogen-activated protein kinase pathway in vascular smooth muscle cells.' J Hypertens 22(9): 1779-85. Tuomilehto, J., Lindstrom, J., Eriksson, J. G., Valle, T. T., Hamalainen, H., Ilanne-Parikka, P., Keinanen-Kiukaanniemi, S., Laakso, M., Louheranta, A., Rastas, M., Salminen, V. and Uusitupa, M. (2001). 'Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance.' N Engl J Med 344(18): 1343-50. Turk, Z., Misur, I., Turk, N. and Benko, B. (1999). 'Rat tissue collagen modified by advanced glycation: correlation with duration of diabetes and glycemic control.' Clin Chem Lab Med 37(8): 813-20. Unoki, H., Bujo, H., Yamagishi, S., Takeuchi, M., Imaizumi, T. and Saito, Y. (2007). 'Advanced glycation end products attenuate cellular insulin sensitivity by increasing the generation of intracellular reactive oxygen species in adipocytes.' Diabetes Res Clin Pract 76(2): 236-44. Warnholtz, A., Nickenig, G., Schulz, E., Macharzina, R., Brasen, J. H., Skatchkov, M., Heitzer, T., Stasch, J. P., Griendling, K. K., Harrison, D. G., Bohm, M., Meinertz, T. and Munzel, T. (1999). 'Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system.' Circulation 99(15): 2027-33. Wautier, M. P., Chappey, O., Corda, S., Stern, D. M., Schmidt, A. M. and Wautier, J. L. (2001). 'Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE.' Am J Physiol Endocrinol Metab 280(5): E685-94. Wei, Y. and Pagliassotti, M. J. (2004). 'Hepatospecific effects of fructose on c-jun NH2-terminal kinase: implications for hepatic insulin resistance.' Am J Physiol Endocrinol Metab 287(5): E926-33. Weiss, D., Kools, J. J. and Taylor, W. R. (2001). 'Angiotensin II-induced hypertension accelerates the development of atherosclerosis in apoE-deficient mice.' Circulation 103(3): 448-54. West, I. C. (2000). 'Radicals and oxidative stress in diabetes.' Diabet Med 17(3): 171-80. Westerhof, N., Sipkema, P., van den Bos, G. and Elzinga, G. (1972). 'Forward and backward waves in the arterial system.' Cardiovasc Res 6(6): 648-656. Wild, S., Roglic, G., Green, A., Sicree, R. and King, H. (2004). 'Global prevalence of diabetes: estimates for the year 2000 and projections for 2030.' Diabetes Care 27(5): 1047-53. Wilkinson, I. B., Qasem, A., McEniery, C. M., Webb, D. J., Avolio, A. P. and Cockcroft, J. R. (2002). 'Nitric oxide regulates local arterial distensibility in vivo.' Circulation 105(2): 213-7. Wolff, S. P., Jiang, Z. Y. and Hunt, J. V. (1991). 'Protein glycation and oxidative stress in diabetes mellitus and ageing.' Free Radic Biol Med 10(5): 339-52. Woodman, R. J., Chew, G. T. and Watts, G. F. (2005). 'Mechanisms, significance and treatment of vascular dysfunction in type 2 diabetes mellitus: focus on lipid-regulating therapy.' Drugs 65(1): 31-74. Wu, L., Iwai, M., Nakagami, H., Li, Z., Chen, R., Suzuki, J., Akishita, M., de Gasparo, M. and Horiuchi, M. (2001). 'Roles of angiotensin II type 2 receptor stimulation associated with selective angiotensin II type 1 receptor blockade with valsartan in the improvement of inflammation-induced vascular injury.' Circulation 104(22): 2716-21. Yamagishi, S., Matsui, T., Nakamura, K., Inoue, H., Takeuchi, M., Ueda, S., Fukami, K., Okuda, S. and Imaizumi, T. (2008). 'Olmesartan blocks advanced glycation end products (AGEs)-induced angiogenesis in vitro by suppressing receptor for AGEs (RAGE) expression.' Microvasc Res 75(1): 130-4. Yao, L., Kobori, H., Rahman, M., Seth, D. M., Shokoji, T., Fan, Y., Zhang, G. X., Kimura, S., Abe, Y. and Nishiyama, A. (2004). 'Olmesartan improves endothelin-induced hypertension and oxidative stress in rats.' Hypertens Res 27(7): 493-500. Zagrodzki, P., Joniec, A., Gawlik, M., Gawlik, M., Kros'niak, M., MARIA Folta, M., HENRYK Barton', H., Pas'ko, P., Chlopicka, J. and Zachwieja, Z. (2007). 'High fructose model of oxidative stress and metabolic disturbances in rats. Part 1. Antioxidant status of rats' tissues.' Bull Vet Inst Pulawy 51: 407-412. Ziegler, O., Quilliot, D., Guerci, B. and Drouin, P. (2001). 'Macronutrients, fat mass, fatty acid flux and insulin sensitivity.' Diabetes Metab 27(2 Pt 2): 261-70. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43387 | - |
| dc.description.abstract | 背景:大量增加果糖攝取量會導致高血壓、胰島素阻抗及脂質異常,這三者對於心血管疾病皆為已確立的危險因子。果糖亦可能造成醣化最終產物 (advanced glycation end-product,AGE) 形成,影響某些動脈系統的物理特性。Olmesartan (OLM) 為一種血管收縮素受體阻斷劑,在離體研究中發現能抑制AGE形成。本篇的研究目標主要是評估OLM在動物體內,是否能藉由抑制不正常的代謝病徵及病態的主動脈膠原蛋白醣化現象,而改善果糖所引發動脈系統物理特性的改變。
方法:雄性Wistar大鼠於兩個月大時,開始將10%濃度的果糖摻入其飲用水中,給予自由飲取。在餵食果糖為期六週的倒數21天開始,每日以灌食方式給予大鼠每公斤體重10毫克的OLM作治療,並與年齡匹配的果糖餵食 (fructose-fed,FF) 大鼠作為對照組別。藉由實驗當中記錄到的脈態升主動脈血壓及血流訊號,作為描述動脈系統物理特性及脈波反射現象的依據。 結果:與FF組別相較,經由OLM治療後的FF組顯示,無論在心輸出量 (cardiac output)、心搏量 (stroke volume) 及主動脈收縮壓 (systolic aortic pressure),皆有明顯的改善。OLM亦能改善果糖對於阻力型血管物理特性上所產生的不良影響,降低19.2% (P<0.005) 的總周邊阻力 (total peripheral resistance)。在動脈血流的脈態性質方面,OLM減緩了因果糖飲食所誘發的動脈延展度 (distensibility) 下降,在主動脈特徵阻抗 (aortic characteristic impedance) 上降低了23.9% (P<0.005),在主動脈平均壓所對應之主動脈容積度 (aortic compliance at mean aortic pressure) 上增進了40.2% (P<0.05)。經OLM治療後的FF組別,波傳輸時間 (wave transit time) 明顯增加29.1% (P<0.005),且波反射係數 (wave reflection factor) 降低13.6% (P<0.05),顯示OLM能改善果糖飲食所造成左心室收縮負荷 (systolic load) 的增加。此外,心室重量以體重校正後之比值 (左心室比率,為心室肥厚的指標) 亦可經由OLM的投予而減少,顯示果糖飲食所導致的心室肥厚可因OLM降低了主動脈硬化而獲得改善。由生化物質分析中發現,OLM能夠降低因果糖餵食而升高的三酸甘油酯 (triglyceride)、胰島素 (insulin) 及丙二醛 (malondialdehyde) 血中濃度。另外,果糖飲食會促進動脈管壁中AGE的含量增加,此現象亦可經由OLM的治療得到改善。 結論:OLM能改善果糖所引起之動脈硬化及左心室肥厚,可能是由於OLM減緩了果糖引發的代謝性病徵並抑制主動脈膠原蛋白的不正常醣化現象。 | zh_TW |
| dc.description.abstract | Objective:Fructose loading may cause hypertension, insulin resistance and dyslipidaemia, a triad of established risk factors for cardiovascular diseases. It also helps in the formation of advanced glycation end-products (AGEs) that could contribute to certain physical changes of the arterial system. Olmesartan (OLM), an angiotensin Ⅱ receptor blocker, has been reported to inhibit in vitro the production of AGEs. Herein, we determined whether OLM prevents the fructose-induced deterioration in physical properties of the arterial system, through targeting the abnormal metabolic profiles as well as the pathogenic glycation on aortic collagen in intact animals.
Methods:Male Wistar rats at 2 months were given 10% fructose in drinking water for 6 weeks. Meanwhile, the fructose-fed (FF) animals received daily treatment with OLM (10 mg kg-1) by oral gavage for the last 21 days of the 6-week period and compared with the untreated FF group. Pulsatile aortic pressure and flow signals were measured to describe the physical properties of the arterial system along with the pulse wave reflection phenomena. Results:After exposure to OLM, the FF rats exhibited a significant improvement in cardiac output, stroke volume and systolic aortic pressure. OLM also prevented the fructose-derived deterioration in physical properties of the resistance vessels, as evidenced by the reduction of 19.2% in total peripheral resistance (P<0.005). As for the pulsatile nature of blood flows in arteries, OLM retarded the fructose-induced decline in aortic distensibility, as reflected in the fall of 23.9% in aortic characteristic impedance (P<0.005) and the rise of 40.2% in systemic arterial compliance (P<0.05). Treatment of the FF animals with OLM also resulted in an essential increase of 29.1% in wave transit time (P<0.005) and a decrease of 13.6% in wave reflection factor (P<0.05). These suggest that OLM may attenuate the fructose-derived augmentation in systolic vascular load imposed on the heart. Meanwhile, the diminished ratio of the left ventricular weight to body weight suggests that prevention of the fructose-related cardiac hypertrophy by OLM may correspond to the drug-induced decline in aortic stiffening. In addition, OLM therapy lowered plasma triglyceride, insulin, and malondialdehyde levels induced by fructose loading. Glycation-derived modification on aortic collagen was also found to be enhanced in the FF rats and the advanced glycation process was retarded by OLM treatment. Conclusion:OLM administration to the FF rats prevents arterial stiffening and cardiac hypertrophy, possibly through improvement of the fructose-derived metabolic profiles and inhibition of the pathogenic glycation on aortic collagen. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:53:34Z (GMT). No. of bitstreams: 1 ntu-98-R96441002-1.pdf: 681160 bytes, checksum: f8a52607428bc309b5e84e92daf8b227 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 目次……………………………………………………………………i
表次……………………………………………………………………iv 圖次……………………………………………………………………v 縮寫表…………………………………………………………………vi 中文摘要………………………………………………………………ix 英文摘要………………………………………………………………xi 文獻回顧 第二型糖尿病…………………………………………………………1 動脈硬化………………………………………………………………2 果糖……………………………………………………………………4 血管收縮素與血管收縮素受體阻斷劑olmesartan…………………15 動脈物理性質之量化…………………………………………………20 主動脈輸入阻抗頻譜的特性及功能…………………………………21 研究目標………………………………………………………………24 材料與方法 實驗動物製備…………………………………………………………25 實驗動物分組…………………………………………………………25 血液中葡萄糖濃度測定………………………………………………26 血壓波及血流波之測量………………………………………………27 手術流程………………………………………………………………28 資料轉換與分析方法…………………………………………………30 左心室比率……………………………………………………………37 主動脈管壁中單一醣化最終產物之萃取……………………………37 膠體電泳………………………………………………………………38 生化物質分析…………………………………………………………39 統計……………………………………………………………………40 結果 基本資料………………………………………………………………41 主動脈輸入阻抗頻譜…………………………………………………42 穩態基本血行力學參數………………………………………………42 脈態血行力學參數……………………………………………………43 生化物質分析…………………………………………………………43 主動脈單一醣化最終產物之膠體電泳結果…………………………44 討論 果糖飲水及OLM劑量投予………………………………………………45 果糖餵食及OLM對心血管動脈物理特性之影響………………………45 果糖餵食及OLM對生化物質之影響……………………………………51 OLM對果糖餵食大鼠之主動脈管壁組成成分的影響…………………53 總結……………………………………………………………………54 參考文獻………………………………………………………………61 | |
| dc.language.iso | zh-TW | |
| dc.subject | olmesartan | zh_TW |
| dc.subject | 主動脈輸入阻抗頻譜 | zh_TW |
| dc.subject | 醣化最終產物 | zh_TW |
| dc.subject | 果糖 | zh_TW |
| dc.subject | 特徵阻抗 | zh_TW |
| dc.subject | olmesartan | en |
| dc.subject | characteristic impedance | en |
| dc.subject | advanced glycation end products | en |
| dc.subject | aortic input impedance spectra | en |
| dc.subject | fructose | en |
| dc.title | Olmesartan能延緩果糖餵食大鼠之動脈硬化及心肌肥厚 | zh_TW |
| dc.title | Olmesartan ameliorates arterial stiffening and cardiac hypertrophy in fructose-fed rats | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳朝峰,賴凌平 | |
| dc.subject.keyword | 醣化最終產物,主動脈輸入阻抗頻譜,果糖,特徵阻抗,olmesartan, | zh_TW |
| dc.subject.keyword | advanced glycation end products,aortic input impedance spectra,fructose,characteristic impedance,olmesartan, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-01 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| Appears in Collections: | 生理學科所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-98-1.pdf Restricted Access | 665.2 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
