Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43357
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳玉怜(Yuh-Lien Chen)
dc.contributor.authorShu-Huei Wangen
dc.contributor.author王淑慧zh_TW
dc.date.accessioned2021-06-15T01:51:41Z-
dc.date.available2009-09-15
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-07-03
dc.identifier.citationAlobaid N, Alnaeb ME, Sales KM, Seifalian AM, Mikhailidis DP, Hamilton G. Endothelial progenitor cells and their potential clinical applications in peripheral arterial disease. Endothelium. 2005; 12:243-250.
Amano S, Yamagishi S, Inagaki Y, Nakamura K, Takeuchi M, Inoue H, Imaizumi T. Pigment epithelium-derived factor inhibits oxidative stress-induced apoptosis and dysfunction of cultured retinal pericytes. Microvasc Res. 2005; 69(1-2):45-55.
Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997; 275:964-967.
Baba H, Yonemitsu Y, Nakano T, Onimaru M, Miyazaki M, Ikeda Y, Sumiyoshi S, Ueda Y, Hasegawa M, Yoshino I, Maehara Y, Sueishi K. Cytoplasmic expression and extracellular deposition of an antiangiogenic factor, pigment epithelium-derived factor, in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 2005; 25:1938-1944.
Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007; 25(6):1384-1392.
Barnstable CJ, Tombran-Tink J. Neuroprotective and antiangiogenic actions of PEDF in the eye: molecular targets and therapeutic potential. Prog Retin Eye Res. 2004; 23(5): 561-577.
Boisvert WA, Santiago R, Curtiss LK, Terkeltaub RA. A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J Clin Invest. 1998; 101(2):353-363.
Caplan BA, Schwartz CJ. Increased endothelial cell turnover in areas of in vivo Evans Blue uptake in the pig aorta. Atherosclerosis. 1973; 17(3):401-417.
Coleman LS. Atherosclerosis may be caused by inadequate levels of turbulence and mixing. World J Surg. 2006;30(4):638-639.
Cai J, Jiang WG, Grant MB, Boulton M. Pigment epithelium-derived factor inhibits angiogenesis via regulated intracellular proteolysis of vascular endothelial growth factor receptor 1. J Biol Chem. 2006; 281(6): 3604-3613.
Casterella PJ, Teirstein PS. Prevention of coronary restenosis. Cardiol Rev. 1999; 7:219-231.
Chen L, Zhang SS, Barnstable CJ, Tombran-Tink J. PEDF induces apoptosis in human endothelial cells by activating p38 MAP kinase dependent cleavage of multiple caspases. Biochem Biophys Res Commun. 2006; 348(4):1288-1295.
Chen YH, Lin SJ, Lin FY, Wu TC, Tsao CR, Huang PH, Liu PL, Chen YL, Chen JW. High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes.2007; 56(6):1559-1568.
Chinetti G, Griglio S, Antonucci M, Torra IP, Delerive P, Majd Z, Fruchart JC, Chapman J, Najib J, Staels B. Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem. 1998; 273(40):25573-25580.
Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, Bouck NP. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science. 1999; 285(5425):245-248.
Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004; 109: III27-32.
Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007; 115: 1285-1295.
Dimmeler S, Vasa-Nicotera M. Aging of progenitor cells: limitation for regenerative capacity? J Am Coll Cardiol. 2003; 42(12):2081-2082.
Dimmeler S and Zeiher M. Vascular repair by circulating endothelial progenitor cells: the missing link in atherosclerosis?J Mol Med. 2004; 82: 671-677.
Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000; 109(1):235-242.
Fadini GP, Coracina A, Baesso I, Agostini C, Tiengo A, Avogaro A, de Kreutzenberg SV. Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population. Stroke. 2006; 37(9):2277-2282.
Fernandez-Garcia NI, Volpert OV, Jimenez B. Pigment epithelium-derived factor as a multifunctional antitumor factor. J Mol Med. 2007; 85:15-22.
Ferns GA, Stewart-Lee AL, Anggård EE. Arterial response to mechanical injury: balloon catheter de-endothelialization. Atherosclerosis. 1992; 92(2-3):89-104.
Forte A, Cipollaro M, Cascino A, Galderisi U. Pathophysiology of stem cells in restenosis. Histol Histopathol. 2007; 22(5):547-557.
Fu YS, Shih YT, Cheng YC, Min MY. Transformation of human umbilical mesenchymal cells into neurons in vitro. J Biomed Sci. 2004; 11(5):652-660.
Fu YS, Cheng YC, Lin MYA, Cheng H, Chu PM, Chou SC, Shih YH, Ko MH, Sung MS. Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem cells. 2006; 24:115-124.
Geiger H, Van Zant G. The aging of lympho-hematopoietic stem cells. Nat Immunol. 2002; 3(4):329-333.
George J, Afek A, Abashidze A, Shmilovich H, Deutsch V, Kopolovich J, Miller H, Keren G.Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic plaque size and composition in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol. 2005; 25(12):2636-2641.
Gilroy DW, Colville-Nash PR, McMaster S, Sawatzky DA, Willoughby DA, Lawrence T. Inducible cyclooxygenase-derived 15-deoxy(Delta)12-14PGJ2 brings about acute inflammatory resolution in rat pleurisy by inducing neutrophil and macrophage apoptosis. FASEB J. 2003; 17(15): 2269-2271.
Gojo S, Gojo N, Takeda Y, Mori T, Abe H, Kyo S, Hata J, Umezawa A. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res. 2003; 288(1):51-59.
Griese DP, Ehsan A, Melo LG, Kong D, Zhang L, Mann MJ, Pratt RE, Mulligan RC, Dzau VJ. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell-based vascular therapy. Circulation. 2003; 108:2710-2715.
Hayani A, Lampeter E, Viswanatha D, Morgan D, Salvi SN. First report of autologous cord blood transplantation in the treatment of a child with leukemia. Pediatrics. 2007; 119(1):e296-300.
Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003; 348(7): 593-600.
Hirsch EZ, Chisolm GM 3rd, White HM. Reendothelialization and maintenance of endothelial integrity in longitudinal denuded tracks in the thoracic aorta of rats. Atherosclerosis. 1983; 46(3):287-307.
Hou T, Xu J, Wu X, Xie Z, Luo F, Zhang Z, Zeng L. Umbilical Cord Wharton's Jelly: A New Potential Cell Source of Mesenchymal Stromal Cells for Bone Tissue Engineering. Tissue Eng Part A. 2009
Hristov M, Erl W, Weber PC. Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol. 2003; 23(7):1185-1189.
Ho TC, Chen SL, Yang YC, Liao CL, Cheng HC, Tsao YP. PEDF induces p53-mediated apoptosis through PPAR gamma signaling in human umbilical vein endothelial cells. Cardiovasc Res. 2007; 76(2):213-223.
Imanishi T, Moriwaki C, Hano T, Nishio I. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J Hypertens. 2005; 23(10):1831-1837.
Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood. 2004; 104:2752-2760.
Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 2001; 107(11):1395-1402.
Kawamoto A, Tkebuchava T, Yamaguchi J, Nishimura H, Yoon YS, Milliken C, Uchida S, Masuo O, Iwaguro H, Ma H, Hanley A, Silver M, Kearney M, Losordo DW, Isner JM, Asahara T. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation. 2003; 107(3): 461-468.
Kip KE, Faxon DP, Detre KM, et al, for the investigators of the NHLBI PTCA registry. Coronary angioplasty in diabetic patients: the National Heart, Lung, and Blood Institute Percutaneous Transluminal Coronary Angioplasty Registry. Circulation. 1996; 94:1818–1825.
Kobayashi K, Kubota T, Aso T. Study on myofibroblast differentiation in the stromal cells of Wharton's jelly: expression and localization of alpha-smooth muscle actin. Early Hum Dev. 1998; 51(3):223-233.
Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001; 7(4): 430-436.
Kong D, Melo LG, Gnecchi M, Zhang L, Mostoslavsky G, Liew CC, Pratt RE, Dzau VJ. Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation. 2004; 110:2039-2046.
Lapidot T, Petit I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol. 2002; 30:973-981.
Landmesser U, Hornig B, Drexler H. Endothelial function: a critical determinant in atherosclerosis? Circulation. 2004; 109: II27-33.
Laughlin MJ, Barker J, Bambach B, Koc ON, Rizzieri DA, Wagner JE, Gerson SL, Lazarus HM, Cairo M, Stevens CE, Rubinstein P, Kurtzberg J. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med. 2001; 344(24):1815-1822.
Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004; 103(5):1669-1675.
Lin SJ, Hong CY, Chang MS, Chiang BN, Chien S. Long-term nicotine exposure increases aortic endothelial cell death and enhances transendothelial macromolecular transport in rats. Arterioscle Thromb. 1992; 12: 1305-1312.
Li MX, Beech-Brandt JJ, John LR, Hoskins PR, Easson WJ. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses. J Biomech. 2007; 40(16):3715-3724.
Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, Han ZB, Xu ZS, Lu YX, Liu D, Chen ZZ, Han ZC. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica. 2006; 91(8):1017-1026.
Lüscher TF, Tanner FC, Noll G. Lipids and endothelial function: effects of lipid-lowering and other therapeutic interventions. Curr Opin Lipidol. 1996; 7:234-240.
Martin-Rendon E, Sweeney D, Lu F, Girdlestone J, Navarrete C, Watt SM. 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang. 2008; 95(2):137-148.
Martin Schillinger and Erich Minar Restenosis After Percutaneous Angioplasty: The Role of Vascular Inflammation Vasc Health Risk Manag. 2005; 1(1): 73–78.
Mazzone T, Jensen M, Chait A. Human arterial wall cells secrete factors that are chemotactic for monocytes. Proc Natl Acad Sci U S A. 1983; 80(16):5094-7.
Medicetty S, Bledsoe AR, Fahrenholtz CB, Troyer D, Weiss ML. Transplantation of pig stem cells into rat brain: proliferation during the first 8 weeks. Exp Neurol. 2004 ; 190(1):32-41.
Miquelin DG, Reis LF, da Silva AA, de Godoy JM. Percutaneous transluminal angioplasty in the treatment of stenosis of arteriovenous fistulae for hemodialysis. Int Arch Med. 2008; 1(1):16.
Nakamura K, Yamagishi S, Matsui T, Yoshida T, Takenaka K, Jinnouchi Y, Yoshida Y, Ueda S, Adachi H, Imaizumi T. Pigment epithelium-derived factor inhibits neointimal hyperplasia after vascular injury by blocking NADPH oxidase-mediated reactive oxygen species generation. Am J Pathol. 2007; 170: 2159-2170.
Qiao C, Xu W, Zhu W, Hu J, Qian H, Yin Q, Jiang R, Yan Y, Mao F, Yang H, Wang X, Chen Y. Human mesenchymal stem cells isolated from the umbilical cord. Cell Biol Int. 2008; 32(1):8-15.
Rashid ST, Salacinski HJ, Fuller BJ, Hamilton G, Seifalian AM. Engineering of bypass conduits to improve patency. Cell Prolif. 2004; 37(5):351-366.
Rauscher FM, Goldschmidt-Clermont PJ, Davis BH, Wang T, Gregg D, Ramaswami P, Pippen AM, Annex BH, Dong C, Taylor DA. Aging, progenitor cell exhaustion, and atherosclerosis. Circulation. 2003; 108(4):457-463.
Reidy MA, Bowyer DE. Distortion of endothelial repair. The effect of hypercholesterolaemia on regeneration of aortic endothelium following injury by endotoxin. A scanning electron microscope study. Atherosclerosis. 1978; 29(4):459-466.
Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993; 362:801-809.
Sales KM, Salacinski HJ, Alobaid N, Mikhail M, Balakrishnan V, Seifalian AM. Advancing vascular tissue engineering: the role of stem cell technology. Trends Biotechnol. 2005; 23(9):461-467.
Sata M, Maejima Y, Adachi F, Fukino K, Saiura A, Sugiura S, Aoyagi T, Imai Y, Kurihara H, Kimura K, Omata M, Makuuchi M, Hirata Y, Nagai R. A mouse model of vascular injury that induces rapid onset of medial cell apoptosis followed by reproducible neointimal hyperplasia. J Mol Cell Cardiol. 2000; 32(11): 2097-2104.
Schachinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C, Abolmaali ND, Vogl TJ, Hofmann WK, Martin H, Dimmeler S, Zeiher AM. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol. 2004; 44:1690-1699.
Schwartz RS. Pathophysiology of restenosis: interaction of thrombosis, hyperplasia, and/or remodeling. Am J Cardiol. 1998; 81:14E-17E.
Secco M, Zucconi E, Vieira NM, Fogaça LL, Cerqueira A, Carvalho MD, Jazedje T, Okamoto OK, Muotri AR, Zatz M. Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells. 2008; 26(1):146-150.
Secco M, Zucconi E, Vieira NM, Fogaça LL, Cerqueira A, Carvalho MD, Jazedje T, Okamoto OK, Muotri AR, Zatz M. Mesenchymal stem cells from umbilical cord: do not discard the cord! Neuromuscul Disord. 2008; 18(1):17-18.
Steele FR, Chader GJ, Johnson LV, Tombran-Tink J. Pigment epithelium-derived factor: neurotrophic activity and identification as a member of the serine protease inhibitor gene family. Proc Natl Acad Sci U S A. 1993; 90(4):1526-1530.
Stein B, Weintraub WS, Gebhart SP, Cohen-Bernstein CL, Grosswald R, Liberman HA, Douglas JS Jr, Morris DC, King SB 3rd. Influence of diabetes mellitus on early and late outcome after percutaneous transluminal coronary angioplasty. Circulation. 1995; 91(4):979-989.
Takenaka K, Yamagishi S, Matsui T, Nakamura K, Jinnouchi Y, Yoshida Y, Ueda S, Katsuki Y, Katsuda Y, Imaizumi T. Pigment epithelium-derived factor (PEDF) administration inhibits occlusive thrombus formation in rats: a possible participation of reduced intraplatelet PEDF in thrombosis of acute coronary syndromes. Atherosclerosis. 2008; 197(1):25-33.
Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002; 360:427-435.
Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation. 2002; 106(22):2781-2786.
Tepper OM, Capla JM, Galiano RD, Ceradini DJ, Callaghan MJ, Kleinman ME, Gurtner GC. Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood. 2005;105(3):1068-1077.
Tombran-Tink J, Chader GG, Johnson LV. PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity. Exp Eye Res. 1991; 53:411-414.
Troyer DL, Weiss ML. Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells. 2008; 26(3):591-599.
Tse W, Laughlin MJ. Umbilical cord blood transplantation: a new alternative option. Hematology. 2005:377-383.
Vanhoutte PM, Boulanger CM. Endothelium-dependent responses in hypertension. Hypertens Res. 1995; 18(2):87-98.
Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001; 89(1): E1-E7.
Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T, Nishimura H, Losordo DW, Asahara T, Isner JM. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation. 2002;105: 3017-3024.
Wang X, Zhu J, Chen J, Shang Y. Effects of nicotine on the number and activity of circulating endothelial progenitor cells. J Clin Pharmacol. 2004; 44(8):881-889.
Wang FH, Sun XD, Zhang X, Xu X, Zhu Q, Huang JN, Fan Y, Gu Q, Liu HY. Role of pigment epithelium-derived factor on proliferation and migration of choroidal capillary endothelium induced by vascular endothelial growth factor in vitro. Chin Med J (Engl). 2007; 120(17):1534-1538.
Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem cells. 2004; 22:1330-1337.
Weiss ML, Mitchell KE, Hix JE, Medicetty S, El-Zarkouny SZ, Grieger D, Troyer DL. Transplantation of porcine umbilical cord matrix cells into the rat brain. Exp Neurol. 2003; 182(2):288-299.
Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, Luo Y, Rao MS, Velagaleti G, Troyer D. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells. 2006; 24(3):781-792.
Werner N, Priller J, Laufs U, Endres M, Böhm M, Dirnagl U, Nickenig G.Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition. Arterioscler Thromb Vasc Biol. 2002; 22(10):1567-1572.
Werner N, Nickenig G. Clinical and therapeutical implications of EPC biology in atherosclerosis. J Cell Mol Med. 2006; 10:318-332.
Wu CH, Chi JC, Jerng JS, Lin SJ, Jan KM, Wang DL, Chien S. Transendothelial macromolecular transport in the aorta of spontaneously hypertensive rats. Hypertension. 1990; 16:154-161.
Wu KH, Yang SG, Zhou B, Du WT, Gu DS, Liu PX, Liao WB, Han ZC, Liu YL. Human umbilical cord derived stem cells for the injured heart. Med Hypotheses. 2007; 68(1):94-97.
Wu KH, Zhou B, Lu SH, Feng B, Yang SG, Du WT, Gu DS, Han ZC, Liu YL. In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells. J Cell Biochem. 2007; 100(3):608-616.
Wu LF, Wang NN, Liu YS, Wei X. Differentiation of Wharton's Jelly Primitive Stromal Cells into Insulin-Producing Cells in Comparison with Bone Marrow Mesenchymal Stem Cells. Tissue Eng Part A. 2009; 3.
Yabe T, Wilson D, Schwartz JP. NFkappaB activation is required for the neuroprotective effects of pigment epithelium-derived factor (PEDF) on cerebellar granule neurons. J Biol Chem. 2001; 276(46):43313-43319.
Yabe T, Kanemitsu K, Sanagi T, Schwartz JP, Yamada H. Pigment epithelium-derived factor induces pro-survival genes through cyclic AMP-responsive element binding protein and nuclear factor kappa B activation in rat cultured cerebellar granule cells: Implication for its neuroprotective effect. Neuroscience. 2005; 133(3):691-700.
Yamagishi S, Inagaki Y, Nakamura K, Abe R, Shimizu T, Yoshimura A, Imaizumi T. Pigment epithelium-derived factor inhibits TNF-α-induced interleukin-6 expression in endothelial cells by suppressing NADPH oxidase-mediated reactive oxygen species generation. J Mol Cell Cardiol. 2004; 37:497-506.
Yamagishi S, Matsui T, Inoue H. Inhibition by advanced glycation end products (AGEs) of pigment epithelium-derived factor (PEDF) gene expression in microvascular endothelial cells. Drugs Exp Clin Res. 2005; 31(5-6):227-232.
Yamagishi S, Matsui T, Nakamura K, Takeuchi M, Imaizumi T. Pigment epithelium-derived factor (PEDF) prevents diabetes- or advanced glycation end products (AGE)-elicited retinal leukostasis. Microvasc Res. 2006; 72(1-2):86-90.
Yamagishi S, Ueda S, Matsui T, Nakamura K, Imaizumi T, Takeuchi M, Okuda S. Pigment epithelium-derived factor (PEDF) prevents advanced glycation end products (AGEs)-elicited endothelial nitric oxide synthase (eNOS) reduction through its anti-oxidative properties. Protein Peptide letters. 2007; 14:832-835.
Yamagishi S, Matsui T, Takenaka K, Nakamura K, Takeuchi M, Inoue H. Pigment epithelium-derived factor (PEDF) prevents platelet activation and aggregation in diabetic rats by blocking deleterious effects of advanced glycation end products (AGEs). Diabetes Metab Res Rev. 2009; 25(3):266-271.
Yamagishi S, Matsui T, Nakamura K, Takenaka K. Administration of pigment epithelium-derived factor prolongs bleeding time by suppressing plasminogen activator inhibitor-1 activity and platelet aggregation in rats. Clin Exp Med. 2009; 9(1):73-76.
Yoshida T, Yamagishi S, Nakamura K, Matsui T, Imaizumi T, Inoue H, Ueno T, Sata M. Pigment epithelium-derived factor (PEDF) blocks the interleukin-6 signaling to C-reactive protein expression in Hep3B cells by suppressing Rac-1 activation. Life Sci. 2006; 79(21):1981-1987.
Zamiri P, Masli S, Streilein JW, Taylor AW. Pigment epithelial growth factor suppresses inflammation by modulating macrophage activation. Invest Ophthalmol Vis Sci. 2006; 47:3912-3918.
Zhang H, Fazel S, Tian H, Mickle DA, Weisel RD, Fujii T, Li RK. Increasing donor age adversely impacts beneficial effects of bone marrow but not smooth muscle myocardial cell therapy. Am J Physiol Heart Circ Physiol. 2005; 289(5):H2089-H2096.
Zhang SX, Wang JJ, Gao G, Shao C, Mott R, Ma JX. Pigment epithelium-derived factor (PEDF) is an endogenous antiinflammatory factor. FASEB J. 2006; 20: 323-325.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43357-
dc.description.abstract在以細胞植入治療心血管疾病方面,欲由骨髓及周邊血液中分離出具有潛能的內皮前驅細胞,結果發現骨髓及周邊血液中的內皮前驅細胞不論在數量或品質上都受到相當大的限制。本篇研究之主要目的為檢測可否從臍帶間質(Wharton’s jelly in human umbilical cord, WJC)中分離、培養並分化出內皮前驅細胞,及探討其是否可影響內皮受損後的內膜增生。首先由臍帶間質分離出的間質細胞(mesenchymal cells, MCs),培養於適合內皮細胞生長的培養液(EGM-2)中可以分化成內皮前驅細胞(late outgrowth endothelial cells) (WJC-OECs),其具有吞噬乙醯化的低密度脂蛋白(acetylated-LDL)之能力,並且表現出內皮細胞特有的蛋白。利用彈性線圈將老鼠股動脈進行去內皮手術後,再將這些已分化的人類內皮前驅細胞經由尾靜脈注射植入老鼠體內,結果發現,這些植入的細胞能夠快速到達內皮受損區,進行血管內皮修補(re-endothelialization)的作用。在去內皮手術後及細胞植入4周後,相較植入saline、MCs及臍帶血衍生之內皮前驅細胞(cord blood-OEC, CB-OECs)之組別,發現植入WJC-OECs之組別中,血管內膜層與中膜層之比例有顯著的降低(2周組,saline: 1.48±0.14, MC: 1.32±0.18, WJC-OEC: 0.95±0.05, CB-OEC: 1.32±0.05; 4周組,分別為saline: 1.81±0.25, MC: 1.68±0.09, WJC-OEC: 01.01±0.07, CB-OEC: 1.39±0.14),而且在內皮受損區,經由組織免疫染色法觀察有大量的色素性上皮細胞衍生因子(pigment epithelium-derived factor, PEDF)表現,相同的結果也可在細胞培養時觀察到;進一步發現WJC-OECs的培養液會抑制人類主動脈平滑肌細胞移行及增生;而藉由加入PEDF抗體或轉染PEDF siRNA來減弱WJC-OECs之PEDF的表現後,顯著抑制其影響。本篇報告是第一篇陳述臍帶間質細胞具有分化成內皮前驅細胞的潛能,而且對於血管內皮細胞受損後的再修補扮演著相當重要的角色,可維持血管內皮的完整,達到抑制內膜增厚的作用。綜合本研究的結果顯示,在血管受損相關疾病的臨床治療,WJC-OEC可視為細胞治療法中的另一個新契機。zh_TW
dc.description.abstractThe number of endothelial progenitor cells (EPCs) that can be obtained from adult bone marrow and peripheral blood to treat cardiovascular diseases is limited. The goal was to examine the endothelial potential of Wharton’s jelly in human umbilical cord (WJC)-derived stem cells and evaluate their potential to affect neointimal formation after vascular injury. Mesenchymal cells (MCs) were isolated from WJC and cultured in endothelial growth medium. Differentiation into late outgrowth endothelial cells (WJC-OECs) was demonstrated by incorporation of acetylated low-density lipoprotein and expression of the endothelial-specific markers. Transplantation of these cells into wire-injured femoral arteries in mice led to rapid re-endothelialization. At 4 weeks after injury, the neointima/media area ratio was reduced and strong expression of pigment epithelium-derived factor (PEDF) compared to saline- or MC- or cord blood-OEC- treated mice. WJC-OECs-conditioned medium has an extremely strong capacity to inhibit the migration and proliferation of smooth muscle cells. The effects were inhibited by neutralizing antibody for PEDF and by siRNA silencing of PEDF. We firstly demonstrated the presence of a cell population within WJC that has the potential to differentiate into OECs. Transplantation of WJC-OECs may play a crucial role in reestablishing endothelial integrity in injured vessels, thereby inhibiting neointimal hyperplasia. These findings have implications for a novel and practical cell-based therapy for vascular diseases.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:51:41Z (GMT). No. of bitstreams: 1
ntu-98-D94446004-1.pdf: 9570725 bytes, checksum: b4f08387f637112a29ac595e8ce3d70a (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents英文縮寫與全名對照表------------------------------------------------------------------------I
英文摘要-----------------------------------------------------------------------------------------------III
中文摘要------------------------------------------------------------------------------------------------V
文獻回顧-------------------------------------------------------------------------------------------------1
一 引言-------------------------------------------------------------------------------------------------1
二 動脈粥狀硬化及血管(再)狹窄之成因-----------------------------------------------------1
三 內皮細胞及平滑肌細胞與心血管疾病之關係------------------------------------------3
四 前驅細胞之來源種類及功能應用----------------------------------------------------------4
五 臍帶間質組織之特性及應用----------------------------------------------------------------6
六 內皮前驅細胞之定義、鑑定、分離培養及表現型-----------------------------------7
七 PEDF與動脈粥狀硬化及血管再狹窄之關聯------------------------------------------8
研究動機及實驗設計-------------------------------------------------------------------------------10
儀器設備-----------------------------------------------------------------------------------------------11
實驗材料與試劑--------------------------------------------------------------------------------------11
實驗用溶液配方--------------------------------------------------------------------------------------15
材料與方法--------------------------------------------------------------------------------------------17
一 細胞初級培養---------------------------------------------------------------------------17
人類臍帶間質細胞及人類臍帶間質內皮前驅細胞之培養-----------------17
人類臍帶臍靜脈內皮細胞之培養-------------------------------------------------17
人類臍帶血內皮前驅細胞之培養-------------------------------------------------18
人類主動脈平滑肌細胞之培養-----------------------------------------------------18
二 內皮細胞功能之定性------------------------------------------------------------------18
DiI-acetylated LDL uptake -------------------------------------------------------18
Matrigel tube-formation-----------------------------------------------------------19
三 前驅細胞潛力之比較------------------------------------------------------------------19
Colony forming assay----------------------------------------------------------------19
Replicative capacity------------------------------------------------------------------19
四 PEDF siRNA----------------------------------------------------------------------------19
五 酵素免疫分析法------------------------------------------------------------------------20
六 動物股動脈去內皮傷害模式及內皮前驅細胞植入--------------------------20
七 免疫組織化學染色---------------------------------------------------------------------21
八 西方墨點法-------------------------------------------------------------------------------21
九 細胞免疫螢光染色---------------------------------------------------------------------22
十 流式細胞儀分析-----------------------------------------------------------------------23
十一 細胞傷口癒合實驗---------------------------------------------------------------------23
十二 細胞穿膜試驗---------------------------------------------------------------------------24
十三 BrdU incorporation staining--------------------------------------------------------24
十四 反轉錄-聚合酶連鎖反應--------------------------------------------------------------24
十五 數據統計分析----------------------------------------------------------------------------25
結果------------------------------------------------------------------------------------------------------26
壹 臍帶間質細胞具有分化成內皮前驅細胞之能力-----------------------------------26
貳 內皮前驅細胞抑制因內皮細胞損傷所引致血管內膜增生----------------------27
參 內皮前驅細胞所釋出PEDF具有抑制內膜增生的作用--------------------------28
肆 分化後內皮前驅細胞釋出PEDF具有抑制平滑肌細胞移行效用-------------28
伍 分化後內皮前驅細胞釋出PEDF具有抑制平滑肌細胞增生作用-------------29
陸 分化後內皮前驅細胞釋出的PEDF對於內皮細胞沒有顯著抑制移行及增生之作用-------------------------------------------------------------------------------------------30
討論------------------------------------------------------------------------------------------------------32
結論與未來展望--------------------------------------------------------------------------------------36
參考文獻-----------------------------------------------------------------------------------------------37
附圖------------------------------------------------------------------------------------------------------51
圖一 初級培養間質細胞(MC)之型態及分化----------------------------------------------51
圖二 臍帶內皮前驅細(WJC-OEC)之特徵--------------------------------------------------52
圖三 初級培養臍帶血內皮前驅細(CB-OEC)之型態及分化---------------------------53
圖四 臍帶血內皮前驅細(CB-OEC)之定性-------------------------------------------------54
圖五 內皮前驅細胞內CD133之表現情形---------------------------------------------------55
圖六 股動脈在去內皮(denudation)手術後立即植入細胞,在4小時後,植 入的細胞在受傷對側正常血管切片上的表現情形--------------------------56
圖六 股動脈在去內皮(denudation)手術後立即植入細胞,在24小時後,植入的細胞在受傷對側正常血管切片上的表現情形-----------------------57
圖七 股動脈在去內皮(denudation)手術後立即植入細胞,在4及24小時後,植入的細胞皆未出現在受傷對側正常血管切片上----------------------58
圖八 植入的WJC-OEC能有效減少股動脈因內皮細胞損傷所引致的內膜增厚
----------------------------------------------------------------------------------------------------59
圖九 各組細胞PEDF之表現量-----------------------------------------------------------------61
圖十 WJC-OEC-CM及PEDF能有效抑制HASMC之移行--------------------------62
圖十一 WJC-OEC-CM及PEDF能有效抑制HASMC之增生-----------------------64
圖十二 WJC-OEC-CM及PEDF對HUVEC移行之效應------------------------------65
圖十三 WJC-OEC-CM及PEDF對HUVEC增生之效應------------------------------67
dc.language.isozh-TW
dc.title臍帶間質組織衍生之內皮前驅細胞具有抑制內皮受損後內膜增生之作用: 藉由色素性上皮細胞衍生因子參與抑制作用zh_TW
dc.titleLate outgrowth endothelial cells derived from Wharton’s jelly in human umbilical cord reduce neointimal formation after vascular injury: involvement of pigment epithelium-derived factoren
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee王淑美(Shue-Mei Wang),吳華林(Hua-Lin Wu),裘正健(Jeng-Jiann Chiu),王懷詩(Hwai-Shi Wang),陳永祥(Yung-Hsiang Chen)
dc.subject.keyword內皮前驅細胞,再狹窄,脊髓間質組織,細胞治療,色素性上皮細胞衍生因子,zh_TW
dc.subject.keywordendothelial progenitor cells,restenosis,Wharton’s jelly,cell therapy,pigment epithelium-derived factor (PEDF),en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2009-07-03
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨生物細胞學研究所zh_TW
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
9.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved