請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43352完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃慶怡(Ching-I Huang) | |
| dc.contributor.author | Chao-Po Hsu | en |
| dc.contributor.author | 許昭博 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:51:22Z | - |
| dc.date.available | 2009-07-21 | |
| dc.date.copyright | 2009-07-21 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-03 | |
| dc.identifier.citation | 1. A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, A. Fujishima, Langmuir 2000, 16, 7044
2. H. Y. Erbil, A. L. Demirel, Y. Avci, O. Mert, Science 2003, 299, 1377 3. L. Zhai, F. C. Cebeci, R. E. Cohen, M. F. Rubner, Nano Lett. 2004, 4, 1349 4. A. B. D. Cassie, S. Baxter, Tran. Faraday Soc. , 1944, 40, 546 5. R. N. Wenzel, Ind. Eng. Chem. 1936, 28, 988 6. A. Nakajima, C. Saiki, K. Hashimoto, T. Watanabe, J. Mater. Sci. Lett. 2001, 20, 1975 7. Girifalco LA, J. Phys. Chem. 1957, 61, 900 8. T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, Y. Ueda, Langnuir 1999, 15, 4321 9. R. N. Wenzel, J. Phys. Colloid Chem. 1949, 53, 1466 10. A. B. D. Cassie, Discuss Faraday Soc. 1948, 3, 11 11. X. M. Li, D. Reinhoudt, M. Crego-Calama, Chem. Soc. Rev. 2007, 36, 1350 12. D. Oner, T. J. McCarthy, Langmuir 2000, 16, 7777 13. W. Lee, M. K. Jin, W. C. Yoo, J. K. Lee, Langmuir 2004, 20, 7665 14. B. Qian, Z. Shen, Langmuir 2005, 21, 9007 15. L. Feng, S. Li, H. Li, J. Zhai, Y. Song, L. Jiang, D. Zhu, Angew. Chem. Int. Ed. 2002, 41, 1221 16. L. Feng, Y. Song, J. Zhai, Y. Song, L. Jiang, D. Zhu, Angew. Chem. Int. Ed. 2003, 42, 800 17. S. Minko; M. Muller; M. Motornov; M. Nistschke; K. Grundke; M. Stamm, J. Am. Chem. Soc. 2003, 125, 3896 18. D. O. H. Teare, C. G. Spanos, P. Ridley, E. J. Kinmond, V. Roucoules, J. P. S. Badyal, S. A. Brewer, S. Coulson, C. Willis, Chem. Mater. 2002, 14, 4566 19. J. P. Youngblood; T. J. McCarthy, Macromolecules 1999, 32, 6800 20. I. Woodward, W. C. E. Schofield, V. Roucoules, J. P. S. Badyal, Langmuir, 2003, 19, 3432 21. W. Ming, D. Wu, R. van Benthem, G. de With, Nano Lett. 2005, 5, 2298 22. W. A. Daoud, J. H. Xin, X. M. Tao, J. Am. Ceram. Soc. 2004, 87, 1782 23. K. Tadanaga, N. Katata, T. Minami, J. Am. Ceram. Soc. 1997, 80, 3213 24. H. M. Shang, Y. Wang, S. J. Limmer, T. P. Chou, K. Takahashi, G. Z. Cao, Thin Solid Films, 2005, 472, 37 25. T. Soeno, K. Inokuchi, S. Shiratori, Trans. Mater. Res. Soc. Jpn, 2003, 28, 1207 26. R. M. Jisr, H. H. Rmaile, J. B. Schlenoff, Angew. Chem. Int. Ed, 2005, 44, 782 27. T. Soeno, K. Inokuchi, S. Shiratori, Appl. Surf. Sci 2004, 237, 543 28. E. Hosono, S. Fujihara, I. Honma, H. S. Zhou, J. Am. Chem. Soc. 2005, 127, 13458 29. X. D. Wu, L. J. Zheng, D. Wu, Langmuir, 2005, 21, 2665 30. M. L. Ma, Y.Mao, M. Gupta, K. K. Gleason, G. C. Rutledge, Macromolecules 2005, 38, 9742 31. J. Y. Shiu, C. W. Kuo, P. L. Chen, C. Y. Mou, Chem. Mater. 2004, 16, 561 32. G. Zhang, D. Y. Wang, Z. Z. Gu, H. Mohwald, Langmuir 2005, 21, 9143 33. S. Wang, L. Feng, L. Jiang, Adv. Mater. 2006, 18, 767 34. S. Chen, C. Hu, L. Chen, N. Xu, Chem. Commun. 2007, 1919 35. Y. Jiang, Z. Wang, X. Yu, F. Shi, H. Xu, Langmuir, 2005, 21, 1986 36. F. Shi, X. Chen, L. Wang, J. Niu, J. Yu, Chem. Mater. 2005, 17, 6177 37. S. Wang, L. Feng, H. Liu, D. Zhu, Chem. Phys. Chem. 2005, 6, 1475 38. H. Kroto, Science, 1988, 242, 1139. 39. R. F. Curl; R. E. Smalley, Science, 1988, 242, 1017. 40. S. Iijima, Science, 1991, 354, 56. 41. M. S. Dresselhaus, Science of Fullerenes and Carbon Nanotubes. (Academic Press inc., 1996) 42. S. Niyogi, Acc. Chem. Res., 2002, 35, 1105. 43. M. Zheng; B. A. Diner, J. Am. Chem. Soc., 2004, 126, 15490. 44. J. W. G. Wilder; L. C. Venema; A. G. Rinzler; R. E. Smalley; C. Dekker, Nature, 1998, 391, 59. 45. T. W. Odom; J. L. Huang; P. Kim; C. M. Lieber, Nature, 1998, 391, 62. 46. P. M. Ajayan, Chem. Rev., 1999, 99, 1787. 47. Yakobson, Appl. Phys. Lett., 1998, 72, 918. 48. M. B. Nardelli; B. I. Yakobson; J. Bernholc, Phys. Rev. B, 1998, 57, R4277. 49. M. B. Nardelli; B. I. Yakobson; J. Bernholc, Phys. Rev. Lett., 1998, 81, 4656. 50. P. Zhang; P. E. Lammert; V. H. Crespi, Phys. Rev. Lett., 1998, 81, 5346. 51. D J. Yang; Q. Zhang; G. Chen; S. F. Yoon; J. Ahn; S. G. Wang; Q. Zhou; Q. Wang; J. Q. Li, Phys. Rev. B, 2002, 66, 165440. 52. R. S. Ruoff; Lorents; C. Donald, Carbon, 1995, 33, 925. 53. M. A. Osman; D. Srivastava, Nanotechnology, 2001, 12, 21. 54. J. Hone; M. Whitney; C. Piskoti; A. Zettl, Phys. Rev. B, 1999, 59, R2514. 55. J. Hone; A. Zettl; M. Whitney, Syn. Meta., 1999, 103, 2498. 56. S. Berber; Y. K. Kwon; D. Tománek, Phys. Rev. Lett., 2000, 84, 4613. 57. Z. Yinghuai; A. T. Peng; K. Carpenter; J. A. Maguire; N. S. Hosmane; M. Takagaki, J. Am. Chem. Soc., 2005, 127, 9875. 58. K. Ajima; M. Yudasaka; T. Murakami; A. Maigne; K. Shiba; S. Iijima, Molecular Pharmaceltics, 2005, 2, 475. 59. Q. Lu; J. M. Moore; G. Huang; A. S. Mount; A. M. Rao; L. L. Larcom; P. C. Ke, Nano Lett., 2004, 4, 2473 60. H. M. So; K. Won; Y. H. Kim; B.K. Kim; B. H. Ryu; P. S. Na; H. Kim; J. O. Lee, J. Am. Chem. Soc.,2005, 127, 11906. 61. J. N. Wohlstadter, Adv. Mater., 2003, 15, 1184. 62. J. Suhr, Nano Lett., 2006, 6, 219. 63. T. Kashiwagi, Polymer, 2005, 46, 471. 64. S. Barrau, Macromol. Rapid Commun., 2005, 26, 390. 65. J. N. Wohlstadter; J. L. Wilbur; G. B. Sigal; H. A. Biebuyck; M. A. Billadeau; L. Dong; A. B. Fischer; S. R. Gudibande; S. H. Jameison; J. H. Kenten; J. Leginus; J. K. Leland; R. J. Massey; S. J. Wohlstadter, Adv. Mater., 2003, 15, 1618. 66. W. Wu; S. Zhang; Y. Li; J. Li; L. Liu; Y. Qin; Z. X. Guo; L. Dai; C. Ye; D. Zhu, Macromolecules, 2003, 36, 6286. 67. Z. Wu; Z. Chen; X. Du; J. M. Logan; J. Sippel; M. Nikolou; K. Kamaras; J. R. Reynolds; D. B. Tanner; A. F. Hebard; A. G. Rinzler, Science, 2004, 305, 1273. 68. I. Efremenko; M. Sheintuch, Langmuir, 2005, 21, 6282. 69. W. Li; X. Wang; Z. Chen; M. Waje; Y. S. Yan, Langmuir, 2005, 21, 9386. 70. K. S. Coleman; S. R. Bailey; S. Fogden; M. L. H. Green, J. Am. Chem. Soc., 2003, 125, 8722. 71. A. Adronov; Z. Yao; N. Braidy; G. A. Botton, J. Am. Chem. Soc., 2003, 125, 16015. 72. I. C. Liu; H. M. Huang; C. Y. Chang; H. C. Tsai; C. H. Hsu; R. C. C. Tsiang, Macromolecules, 2004, 37, 283. 73. L. Qu; L. M. Veca; Y. Lin; A. Kitaygorodskiy; B. Chen; A. M. McCall; J. W. Connell; Y. P. Sun, Macromolecules, 2005, 38, 10328. 74. D. Chattopadhyay; I. Galeska; F. Papadimitrakopoulos, J. Am. Chem. Soc., 2003, 125, 3370. 75. Y. Maeda; S. Kimura; Y. Hirashima; M. Y. Kanda; Y. Lian; T. Wakahara; T. Akasaka; T. Hasegawa; H. Tokumoto; T. Shimizu; H. Kataura; Y. Miyauchi; S. Maruyama; K. Kobayashi; S. Nagase, J. Phys. Chem. B, 2004, 108, 18395. 76. N. Choi; M. Kimura; H. Kata, Jpn. J. Appl. Phys., 2002, 41, 6264. 77. H. Chang; J. D. Lee; S. M. Lee; Y. H. Lee, Appl. Phys. Lett., 2001, 79, 3863. 78. J. Kong; H. Dai, J. Phys. Chem. B, 2001, 105, 2890. 79. K. Bradley; J. C. P. Gabriel; M. Briman; A. Star; G. Grüner, Phys. Rev. Lett., 2003, 91, 218301. 80. E. V. Basiuk; V. A. Basiuk; J. G. Banuelos; B. J. M. Saniger; V. A. Pokrovskiy; T. Y. Gromovoy;A. V. Mischanchuk; B. G. Mischanchuk, J. Phys. Chem. B, 2002, 106, 1588. 81. V. C. Moore; M. S. Strano; E. H. Haroz; R. H. Hauge; R.E. Smalley; J. Schmidt; Y. Talmon, Nano Lett., 2003, 3, 1379. 82. H. T. Ham; Y. S. Choi; I. J. Chung, J. Colloid Interface Sci., 2005, 286, 216. 83. X. Lou; R. Daussin; S. Cuenot; A. S. Duwez; C. Pagnoulle; C. Detrembleur; C. Bailly; R. Jerome, Chem. Mater., 2004, 16, 4005. 84. O. K.Kim; J. Je; J. W. Baldwin; S. Kooi; P. E. Pehrsson; L. J. Buckley, J. Am. Chem. Soc., 2003, 125, 4426. 85. V. A. Sinani; M. K. Gheith; A. A. Yaroslavov; A. A. Rakhnyanskaya; K. Sun; A. A. Mamedov; J. P. Wicksted; N. A. Kotov, J. Am. Chem. Soc., 2005, 127, 3463. 86. A. Carrillo; J. A. Swartz; J. M. Gamba; R. S. Kane; N. Chakrapani; B. Wei; P. M. Ajayan, Nano Lett., 2005, 3, 1437. 87. A. Star; D. W. Steuerman; J. R. Heath; J. F. Stoddart, Angew. Chem., 2002, 41, 2508. 88. S. Iijima, Appl. Phys. A, 2000, 71, 449. 89. T. A. Taton; Y. Kang, J. Am. Chem. Soc., 2003, 125, 5650. 90. H. Kitano; K. Tachimoto; T. N. Hirabayashi; H. Shinohara, Macromol. Chem. Phys., 2004, 205, 2064. 91. J. F. Stoddart, Angew. Chem., 2001, 113, 1771. 92. J. F. Stoddart ; A. Star; J. F. Stoddart; D. Steuerman; M. Diehl; A. Boukai; E. W. Wong; X. Yang; S. W. Chung; H. Choi; J. R. Heath, Angew. Chem., 2001, 40, 1721. 93. R. E. Smalley, Chem. Phys. Lett., 2001, 342, 265. 94. J. F. Stoddart; A. Star; Y. Liu; K. Grant; L. Ridvan; J. F. Stoddart; D. W. Steuerman; M. R. Diehl; A. Boukai; J. R. Heath, Macromolecules, 2003, 36, 553. 95. F. Balavoine; P. Schultz; C. Richard; V. Mallouh; T. W. Ebbesen; C. Mioskowski, Angew. Chem. Int. Ed., 1999, 38, 1912. 96. R. Shvartzman-Cohen; Y. Levi-Kalisman; E. Nativ-Roth; R. Yerushalmi-Rozen, Langmuir, 2004, 20, 6085 97. E. Nativ-Roth; R. Shvartzman-Cohen; C. Bounioux; M. Florent; D. Zhang; I. Szleifer; R. Yerushalmi-Rozen, Macromolecules, 2007, 40, 3676 98. I. Cotiuga, F. Picchioni, U. S. Agarwal, D. Wouters, J. Loos, P. J. Lemstra, Macromol. Rapid Commun. 2006, 27, 1073 99. Y. F. Lan, J. J. Lin, J. Phys. Chem. A 2009. E. Dujardin, T.W. Ebbesen, H. Hiura, K. Tanigaki, Science, 1994, 265, 1850 100. K. K. S. Lau; J. Bico; L. B. K. Teo; M. Chhowalla, G. A. J. Amaratunga; W. I. Milne; G. H. McKinley; K. K. Gleason, Nano Lett. 2003, 3, 1701 101. P. Li; X. Lim; Y. Zhu; T. Yu; C. K. Ong; Z. Shen; A. T. S. Wee; C. H. Sow J. Phys. Phem. B 2007, 111, 1672 102. H. Liu; X. Wang; Y. Song; Q. Lin; L. Jiang; D. Zhu Angew. Chem. Int. Ed 2001, 40, 1743 103. T. Sun; G. Wang; H. Liu; H.L. Feng; L. Jiang; D. Zhu J. Am. Chem. Soc. 2003, 125, 14996 104. D. Xu, H. Liu, L. Yang, Z. Wang, Carbon 2006, 44, 3226 105. B. A. Kakade; V. K. Pillai J. Phys. Chem. C 2008, 9, 3183 106. V. Georgakilas; A. B. Bourlinos; R. Zboril; C. Trapalis Chem. Mater. 2008, 20, 2884 107. L.Huang; S. P. Lau; H. Y. Yang; E. S. P. Leong; S.F. Yu, J. Phys. Chem. B 2005, 109, 7746 108. Y. Li; X. J. Huang; S. H. Heo; C. C. Li; Y. K. Choi; W. P. Cai; S. O. Cho Langmuir 2007, 23, 2169 109. Y. Liu; J. Tang; R.Wang; H. Lu; L. Li; Y. Kong; K. Qi; J. H. Xin J. Mater. Chem. 2007, 17, 1071 110. C. T. Hsieh; W. Y. Chen; F. L. Wu Carbon 2008, 46, 1218 111. K. S. Liao, A. Wan, J. D. Batteas, D. E. Bergbreiter, Langmuir 2008, 24, 4245 112. P. Li, X. Lim, Y. Zhu, T. Yu, C. K. Ong, Z. Shen, A. T. S. Wee, C. H. Sow J. Phys. Chem. B 2007, 111, 1672 113. K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, K. K. Gleason, Nano Lett. 2003, 3, 1701 114. J. L. Bahr, E. T. Mickelson, M. J. Bronikowski, R. E. Smalley, J. M. Tour, Chem. Commun. 2001, 193 115. L. Feng, Z. Tang, J. Zhai, Y. Song, B. Liu, Y. Ma, Z. Yang, L. Jiang, D. Zhu, Angew. Chem. Int. Ed. 2003, 42, 4217 116. Z. Guo, F. Zhou, J. Hao, W. Liu. J. Am. Chem. Soc. 2005, 127, 15670 117. C. F. Wang, Y. T. Wang, P. H. Tung, S. W. Kuo, C. H. Lin, Y. C. Sheen, F. C. Chang, Langmuir, 2006, 22, 8289 118. Y. Zhu, J. Zhang, Y. Zheng, Z. Huang, L. Feng, L. Jiang, Adv. Funct. Mater. 2006, 16, 568 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43352 | - |
| dc.description.abstract | 隨著科技不斷的進步,物體表面自清潔功能是奈米科技廣為討論的研究課題,透過自然界蓮花效應得到超疏水性自清潔作用機制的基本原理:低表位能的疏水化學物質及粗糙度。奈米碳管物性、化性或材料特性上均有著顯著非凡的表現,由於奈米碳管本身疏水的化學特性,在尺寸上為奈米等級的結構,以奈米碳管作為超疏水的材料在近年以來為熱門研究議題。目前文獻中奈米碳管應用於超疏水特性方面多透過含氟、長烷基鏈等低表位能物質進行化學改質或化學沈積法排列奈米碳管製成具有雙尺寸粗糙度表面,其製程相對較為繁瑣,因此研發出簡單之製程,僅需透過聚異丁烯胺將奈米碳管分散之溶液塗佈於基材上及可製備超疏水之複材薄膜。利用不同莫耳比例之聚異丁烯接枝丁二酸酐共聚物和聚氧丙烯嵌段三胺共聚物反應合成之聚異丁烯胺共聚物衍生物,含有能與奈米碳管管壁產生強非共價作用力之胺基,經過超音波震盪吸附於脫束之獨立奈米碳管上;疏水端聚異丁烯鏈段在有機溶劑中為提供溶解端,能有效的將獨立之奈米碳管經由鏈段造成空間阻礙使其分散於有機溶劑中,製備穩定分散之奈米碳管溶液。將聚異丁烯胺和奈米碳管分散液塗佈於基材上製備之複材薄膜,由於奈米碳管聚集產生之粗糙度及異丁烯胺之低表面能化學特性,使該複材薄膜具備超疏水的特性。而改變奈米碳管與聚異丁烯胺比例形成之複材薄膜,經由粗糙度之差異可操控其表面親疏水特性,有高於160度之接觸角。進一步增強薄膜的強度,聚異丁烯胺可同時當硬化劑與雙酚A二縮水甘油醚型環氧酯樹脂進行硬化反應,製備成強度佳之奈米碳管/聚異丁烯胺/環氧酯樹脂複材薄膜,其結構強韌穩定並在長時間的浸水處理、強酸強鹼之環境下或物理性刮磨依然能保有超疏水之特性。 | zh_TW |
| dc.description.abstract | We report a facile method for preparation of the robust superhydrophobic film by fabricated carbon nanotubes (CNTs) in the matrix of polyamine-cured epoxy nanocomposite. The requisite polyisobutylene-amines (PIB-amine) were prepared from amidation of PIB-succinic anhydride with polyoxypropylene-triamine at various molar ratios The PIB-amines, consisting of multiple amindoacid functionalities and have chemical structures of linear molecule with one PIB terminal, two PIB terminal and branch with three PIB terminal, serve as an intensive noncovalent bonding force for de-bundling CNTs aggregates into individual tubes. The CNTs dispersion was analyzed by UV-vis absorption and transmission electron microscopy (TEM). The finely dispersed CNTs were consequently self-aligned along with the hydrophobic PIB alkyls into micrometer scale of roughness and showed superhydrophobic and self-cleaning phenomenon. The morphology of the align CNTs surface was observed by scanning electron microscopy (SEM) and the result showed the roughness scale is around 1−4 μm. Furthermore, the CNTs dispersion was introduced into diglycidylether of bisphenol-A. Regarded PIB-triamine as a curing agent, the robust polyamine-epoxy nanocomposite can be generated and demonstrated a superhydrophobic property with the measurement of water contact angle up to 160o. The polyamine-epoxy nanocomposite was self-standing and stable against the immersion in water with a wide range of pH and a mechanical scratching. The convenient manipulation of PIB-amine structure, the PIB-amine/CNTs/epoxy nanocomposite and curing conditions may represent an advance for superhydrophobic coating materials that conventionally required CNTs organic modification or fluorinated alkyl compounds as reported in literature. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:51:22Z (GMT). No. of bitstreams: 1 ntu-98-R96549015-1.pdf: 6968150 bytes, checksum: 3ba2c8db2f5a04af9bf816e8a328a8a6 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENT........................................................................ -Ⅰ-
摘要…..............................................................................................- Ⅱ - ABSTRACT..........................................................................................- Ⅲ - LIST OF FIGURES................................................................................- Ⅵ - LIST OF TABLES..................................................................................- Ⅸ - CHAPTER ONE INTRODUCTION ..........................................................- 1 - 1.1. Overview......................................................................................- 1 - 1.2 Theoretical Background of Wettability ..........................................- 3 - 1.3 Structures and Characterization of Superhydrophobic Surface.........- 5 - CHAPTER TWO LITERATURE REVIEW .....................................................- 7 - 2.1 Methods Used for Preparation of Superhydrophobic Surfaces.........- 7 - 2.1.1 Physical Methods…………………….......................................- 7 - 2.1.2 Chemical Methods……………………....................................- 11 - 2.2. Low-Surface-Energy Modification on Rough Surfaces...................- 16 - 2.3. Introduction of Carbon Nanotubes...............................................- 17 - 2.4. Overview of Dispersibility of CNTs..............................................- 20 - 2.4.1 Chemical Modification.........................................................- 20 - 2.4.2 Physical Absorption.............................................................- 22 - 2.4.3 Geometric Shaped Diseprsion.............................................- 25 - 2.5 The Wettability of Carbon Nanotubes .........................................- 26 - CHAPTER THREE MATERIALS AND EXPERIMENTS.................................- 31 - 3.1 Materials ....................................................................................- 31 - 3.2 Experiments..................................................................................- 32 - 3.3 Measurements……………............................................................- 34 - CHAPTER FOUR RESULTS AND DISCUSSION.......................................- 35 - 4.1 Synthesis and Characterization of PIB-MA-amine Derivatives ......- 35 - 4.2 Dispersing Property of CNTs and Polymers..................................- 37 - 4.3 Water Contact Angles of the Polymer/CNTs Films.........................- 40 - 4.4 The Morphologies of the Polymer/CNTs Surfaces..........................- 43 - 4.5 Control the Wettability of the Films..............................................- 44 - 4.6 The Effect of pH Values on Contact Angles...................................- 47 - 4.7 Enhance the Robustness of the Films by Epoxy Resin Addition.....- 48 - CHAPTER FIVE CONCLUSION ............................................................- 50 - CHAPTER SIX REFERENCES................................................................- 51 - | |
| dc.language.iso | en | |
| dc.subject | 奈米碳管 | zh_TW |
| dc.subject | 超疏水表面 | zh_TW |
| dc.subject | 薄膜 | zh_TW |
| dc.subject | 聚異丁烯胺 | zh_TW |
| dc.subject | CNTs | en |
| dc.subject | superhydrophobic surface | en |
| dc.subject | polyisobutylene-amines | en |
| dc.subject | film | en |
| dc.title | 聚異丁烯胺與奈米碳管控制粗糙度製備超疏水表面 | zh_TW |
| dc.title | Fabrication of Robust Superhydrophobic Surface with Roughness Controls by Carbon Nanotubes and Polyisobutylamines | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林江珍(Jaing-Jen Lin),邱文英,謝國煌 | |
| dc.subject.keyword | 超疏水表面,薄膜,奈米碳管,聚異丁烯胺, | zh_TW |
| dc.subject.keyword | superhydrophobic surface,film,CNTs,polyisobutylene-amines, | en |
| dc.relation.page | 57 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-03 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 6.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
