Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43352
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶怡(Ching-I Huang)
dc.contributor.authorChao-Po Hsuen
dc.contributor.author許昭博zh_TW
dc.date.accessioned2021-06-15T01:51:22Z-
dc.date.available2009-07-21
dc.date.copyright2009-07-21
dc.date.issued2009
dc.date.submitted2009-07-03
dc.identifier.citation1. A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, A. Fujishima, Langmuir 2000, 16, 7044
2. H. Y. Erbil, A. L. Demirel, Y. Avci, O. Mert, Science 2003, 299, 1377
3. L. Zhai, F. C. Cebeci, R. E. Cohen, M. F. Rubner, Nano Lett. 2004, 4, 1349
4. A. B. D. Cassie, S. Baxter, Tran. Faraday Soc. , 1944, 40, 546
5. R. N. Wenzel, Ind. Eng. Chem. 1936, 28, 988
6. A. Nakajima, C. Saiki, K. Hashimoto, T. Watanabe, J. Mater. Sci. Lett. 2001, 20, 1975
7. Girifalco LA, J. Phys. Chem. 1957, 61, 900
8. T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, Y. Ueda, Langnuir 1999, 15, 4321
9. R. N. Wenzel, J. Phys. Colloid Chem. 1949, 53, 1466
10. A. B. D. Cassie, Discuss Faraday Soc. 1948, 3, 11
11. X. M. Li, D. Reinhoudt, M. Crego-Calama, Chem. Soc. Rev. 2007, 36, 1350
12. D. Oner, T. J. McCarthy, Langmuir 2000, 16, 7777
13. W. Lee, M. K. Jin, W. C. Yoo, J. K. Lee, Langmuir 2004, 20, 7665
14. B. Qian, Z. Shen, Langmuir 2005, 21, 9007
15. L. Feng, S. Li, H. Li, J. Zhai, Y. Song, L. Jiang, D. Zhu, Angew. Chem. Int. Ed. 2002, 41, 1221
16. L. Feng, Y. Song, J. Zhai, Y. Song, L. Jiang, D. Zhu, Angew. Chem. Int. Ed. 2003, 42, 800
17. S. Minko; M. Muller; M. Motornov; M. Nistschke; K. Grundke; M. Stamm, J. Am. Chem. Soc. 2003, 125, 3896
18. D. O. H. Teare, C. G. Spanos, P. Ridley, E. J. Kinmond, V. Roucoules, J. P. S. Badyal, S. A. Brewer, S. Coulson, C. Willis, Chem. Mater. 2002, 14, 4566
19. J. P. Youngblood; T. J. McCarthy, Macromolecules 1999, 32, 6800
20. I. Woodward, W. C. E. Schofield, V. Roucoules, J. P. S. Badyal, Langmuir, 2003, 19, 3432
21. W. Ming, D. Wu, R. van Benthem, G. de With, Nano Lett. 2005, 5, 2298
22. W. A. Daoud, J. H. Xin, X. M. Tao, J. Am. Ceram. Soc. 2004, 87, 1782
23. K. Tadanaga, N. Katata, T. Minami, J. Am. Ceram. Soc. 1997, 80, 3213
24. H. M. Shang, Y. Wang, S. J. Limmer, T. P. Chou, K. Takahashi, G. Z. Cao, Thin Solid Films, 2005, 472, 37
25. T. Soeno, K. Inokuchi, S. Shiratori, Trans. Mater. Res. Soc. Jpn, 2003, 28, 1207
26. R. M. Jisr, H. H. Rmaile, J. B. Schlenoff, Angew. Chem. Int. Ed, 2005, 44, 782
27. T. Soeno, K. Inokuchi, S. Shiratori, Appl. Surf. Sci 2004, 237, 543
28. E. Hosono, S. Fujihara, I. Honma, H. S. Zhou, J. Am. Chem. Soc. 2005, 127, 13458
29. X. D. Wu, L. J. Zheng, D. Wu, Langmuir, 2005, 21, 2665
30. M. L. Ma, Y.Mao, M. Gupta, K. K. Gleason, G. C. Rutledge, Macromolecules 2005, 38, 9742
31. J. Y. Shiu, C. W. Kuo, P. L. Chen, C. Y. Mou, Chem. Mater. 2004, 16, 561
32. G. Zhang, D. Y. Wang, Z. Z. Gu, H. Mohwald, Langmuir 2005, 21, 9143
33. S. Wang, L. Feng, L. Jiang, Adv. Mater. 2006, 18, 767
34. S. Chen, C. Hu, L. Chen, N. Xu, Chem. Commun. 2007, 1919
35. Y. Jiang, Z. Wang, X. Yu, F. Shi, H. Xu, Langmuir, 2005, 21, 1986
36. F. Shi, X. Chen, L. Wang, J. Niu, J. Yu, Chem. Mater. 2005, 17, 6177
37. S. Wang, L. Feng, H. Liu, D. Zhu, Chem. Phys. Chem. 2005, 6, 1475
38. H. Kroto, Science, 1988, 242, 1139.
39. R. F. Curl; R. E. Smalley, Science, 1988, 242, 1017.
40. S. Iijima, Science, 1991, 354, 56.
41. M. S. Dresselhaus, Science of Fullerenes and Carbon Nanotubes. (Academic Press inc., 1996)
42. S. Niyogi, Acc. Chem. Res., 2002, 35, 1105.
43. M. Zheng; B. A. Diner, J. Am. Chem. Soc., 2004, 126, 15490.
44. J. W. G. Wilder; L. C. Venema; A. G. Rinzler; R. E. Smalley; C. Dekker, Nature, 1998, 391, 59.
45. T. W. Odom; J. L. Huang; P. Kim; C. M. Lieber, Nature, 1998, 391, 62.
46. P. M. Ajayan, Chem. Rev., 1999, 99, 1787.
47. Yakobson, Appl. Phys. Lett., 1998, 72, 918.
48. M. B. Nardelli; B. I. Yakobson; J. Bernholc, Phys. Rev. B, 1998, 57, R4277.
49. M. B. Nardelli; B. I. Yakobson; J. Bernholc, Phys. Rev. Lett., 1998, 81, 4656.
50. P. Zhang; P. E. Lammert; V. H. Crespi, Phys. Rev. Lett., 1998, 81, 5346.
51. D J. Yang; Q. Zhang; G. Chen; S. F. Yoon; J. Ahn; S. G. Wang; Q. Zhou; Q. Wang; J. Q. Li, Phys. Rev. B, 2002, 66, 165440.
52. R. S. Ruoff; Lorents; C. Donald, Carbon, 1995, 33, 925.
53. M. A. Osman; D. Srivastava, Nanotechnology, 2001, 12, 21.
54. J. Hone; M. Whitney; C. Piskoti; A. Zettl, Phys. Rev. B, 1999, 59, R2514.
55. J. Hone; A. Zettl; M. Whitney, Syn. Meta., 1999, 103, 2498.
56. S. Berber; Y. K. Kwon; D. Tománek, Phys. Rev. Lett., 2000, 84, 4613.
57. Z. Yinghuai; A. T. Peng; K. Carpenter; J. A. Maguire; N. S. Hosmane; M. Takagaki, J. Am. Chem. Soc., 2005, 127, 9875.
58. K. Ajima; M. Yudasaka; T. Murakami; A. Maigne; K. Shiba; S. Iijima, Molecular Pharmaceltics, 2005, 2, 475.
59. Q. Lu; J. M. Moore; G. Huang; A. S. Mount; A. M. Rao; L. L. Larcom; P. C. Ke, Nano Lett., 2004, 4, 2473
60. H. M. So; K. Won; Y. H. Kim; B.K. Kim; B. H. Ryu; P. S. Na; H. Kim; J. O. Lee, J. Am. Chem. Soc.,2005, 127, 11906.
61. J. N. Wohlstadter, Adv. Mater., 2003, 15, 1184.
62. J. Suhr, Nano Lett., 2006, 6, 219.
63. T. Kashiwagi, Polymer, 2005, 46, 471.
64. S. Barrau, Macromol. Rapid Commun., 2005, 26, 390.
65. J. N. Wohlstadter; J. L. Wilbur; G. B. Sigal; H. A. Biebuyck; M. A. Billadeau; L. Dong; A. B. Fischer; S. R. Gudibande; S. H. Jameison; J. H. Kenten; J. Leginus; J. K. Leland; R. J. Massey; S. J. Wohlstadter, Adv. Mater., 2003, 15, 1618.
66. W. Wu; S. Zhang; Y. Li; J. Li; L. Liu; Y. Qin; Z. X. Guo; L. Dai; C. Ye; D. Zhu, Macromolecules, 2003, 36, 6286.
67. Z. Wu; Z. Chen; X. Du; J. M. Logan; J. Sippel; M. Nikolou; K. Kamaras; J. R. Reynolds; D. B. Tanner; A. F. Hebard; A. G. Rinzler, Science, 2004, 305, 1273.
68. I. Efremenko; M. Sheintuch, Langmuir, 2005, 21, 6282.
69. W. Li; X. Wang; Z. Chen; M. Waje; Y. S. Yan, Langmuir, 2005, 21, 9386.
70. K. S. Coleman; S. R. Bailey; S. Fogden; M. L. H. Green, J. Am. Chem. Soc., 2003, 125, 8722.
71. A. Adronov; Z. Yao; N. Braidy; G. A. Botton, J. Am. Chem. Soc., 2003, 125, 16015.
72. I. C. Liu; H. M. Huang; C. Y. Chang; H. C. Tsai; C. H. Hsu; R. C. C. Tsiang, Macromolecules, 2004, 37, 283.
73. L. Qu; L. M. Veca; Y. Lin; A. Kitaygorodskiy; B. Chen; A. M. McCall; J. W. Connell; Y. P. Sun, Macromolecules, 2005, 38, 10328.
74. D. Chattopadhyay; I. Galeska; F. Papadimitrakopoulos, J. Am. Chem. Soc., 2003, 125, 3370.
75. Y. Maeda; S. Kimura; Y. Hirashima; M. Y. Kanda; Y. Lian; T. Wakahara; T. Akasaka; T. Hasegawa; H. Tokumoto; T. Shimizu; H. Kataura; Y. Miyauchi; S. Maruyama; K. Kobayashi; S. Nagase, J. Phys. Chem. B, 2004, 108, 18395.
76. N. Choi; M. Kimura; H. Kata, Jpn. J. Appl. Phys., 2002, 41, 6264.
77. H. Chang; J. D. Lee; S. M. Lee; Y. H. Lee, Appl. Phys. Lett., 2001, 79, 3863.
78. J. Kong; H. Dai, J. Phys. Chem. B, 2001, 105, 2890.
79. K. Bradley; J. C. P. Gabriel; M. Briman; A. Star; G. Grüner, Phys. Rev. Lett., 2003, 91, 218301.
80. E. V. Basiuk; V. A. Basiuk; J. G. Banuelos; B. J. M. Saniger; V. A. Pokrovskiy; T. Y. Gromovoy;A. V. Mischanchuk; B. G. Mischanchuk, J. Phys. Chem. B, 2002, 106, 1588.
81. V. C. Moore; M. S. Strano; E. H. Haroz; R. H. Hauge; R.E. Smalley; J. Schmidt; Y. Talmon, Nano Lett., 2003, 3, 1379.
82. H. T. Ham; Y. S. Choi; I. J. Chung, J. Colloid Interface Sci., 2005, 286, 216.
83. X. Lou; R. Daussin; S. Cuenot; A. S. Duwez; C. Pagnoulle; C. Detrembleur; C. Bailly; R. Jerome, Chem. Mater., 2004, 16, 4005.
84. O. K.Kim; J. Je; J. W. Baldwin; S. Kooi; P. E. Pehrsson; L. J. Buckley, J. Am. Chem. Soc., 2003, 125, 4426.
85. V. A. Sinani; M. K. Gheith; A. A. Yaroslavov; A. A. Rakhnyanskaya; K. Sun; A. A. Mamedov; J. P. Wicksted; N. A. Kotov, J. Am. Chem. Soc., 2005, 127, 3463.
86. A. Carrillo; J. A. Swartz; J. M. Gamba; R. S. Kane; N. Chakrapani; B. Wei; P. M. Ajayan, Nano Lett., 2005, 3, 1437.
87. A. Star; D. W. Steuerman; J. R. Heath; J. F. Stoddart, Angew. Chem., 2002, 41, 2508.
88. S. Iijima, Appl. Phys. A, 2000, 71, 449.
89. T. A. Taton; Y. Kang, J. Am. Chem. Soc., 2003, 125, 5650.
90. H. Kitano; K. Tachimoto; T. N. Hirabayashi; H. Shinohara, Macromol. Chem. Phys., 2004, 205, 2064.
91. J. F. Stoddart, Angew. Chem., 2001, 113, 1771.
92. J. F. Stoddart ; A. Star; J. F. Stoddart; D. Steuerman; M. Diehl; A. Boukai; E. W. Wong; X. Yang; S. W. Chung; H. Choi; J. R. Heath, Angew. Chem., 2001, 40, 1721.
93. R. E. Smalley, Chem. Phys. Lett., 2001, 342, 265.
94. J. F. Stoddart; A. Star; Y. Liu; K. Grant; L. Ridvan; J. F. Stoddart; D. W. Steuerman; M. R. Diehl; A. Boukai; J. R. Heath, Macromolecules, 2003, 36, 553.
95. F. Balavoine; P. Schultz; C. Richard; V. Mallouh; T. W. Ebbesen; C. Mioskowski, Angew. Chem. Int. Ed., 1999, 38, 1912.
96. R. Shvartzman-Cohen; Y. Levi-Kalisman; E. Nativ-Roth; R. Yerushalmi-Rozen, Langmuir, 2004, 20, 6085
97. E. Nativ-Roth; R. Shvartzman-Cohen; C. Bounioux; M. Florent; D. Zhang; I. Szleifer; R. Yerushalmi-Rozen, Macromolecules, 2007, 40, 3676
98. I. Cotiuga, F. Picchioni, U. S. Agarwal, D. Wouters, J. Loos, P. J. Lemstra, Macromol. Rapid Commun. 2006, 27, 1073
99. Y. F. Lan, J. J. Lin, J. Phys. Chem. A 2009.
E. Dujardin, T.W. Ebbesen, H. Hiura, K. Tanigaki, Science, 1994, 265, 1850
100. K. K. S. Lau; J. Bico; L. B. K. Teo; M. Chhowalla, G. A. J. Amaratunga; W. I. Milne; G. H. McKinley; K. K. Gleason, Nano Lett. 2003, 3, 1701
101. P. Li; X. Lim; Y. Zhu; T. Yu; C. K. Ong; Z. Shen; A. T. S. Wee; C. H. Sow J. Phys. Phem. B 2007, 111, 1672
102. H. Liu; X. Wang; Y. Song; Q. Lin; L. Jiang; D. Zhu Angew. Chem. Int. Ed 2001, 40, 1743
103. T. Sun; G. Wang; H. Liu; H.L. Feng; L. Jiang; D. Zhu J. Am. Chem. Soc. 2003, 125, 14996
104. D. Xu, H. Liu, L. Yang, Z. Wang, Carbon 2006, 44, 3226
105. B. A. Kakade; V. K. Pillai J. Phys. Chem. C 2008, 9, 3183
106. V. Georgakilas; A. B. Bourlinos; R. Zboril; C. Trapalis Chem. Mater. 2008, 20, 2884
107. L.Huang; S. P. Lau; H. Y. Yang; E. S. P. Leong; S.F. Yu, J. Phys. Chem. B 2005, 109, 7746
108. Y. Li; X. J. Huang; S. H. Heo; C. C. Li; Y. K. Choi; W. P. Cai; S. O. Cho Langmuir 2007, 23, 2169
109. Y. Liu; J. Tang; R.Wang; H. Lu; L. Li; Y. Kong; K. Qi; J. H. Xin J. Mater. Chem. 2007, 17, 1071
110. C. T. Hsieh; W. Y. Chen; F. L. Wu Carbon 2008, 46, 1218
111. K. S. Liao, A. Wan, J. D. Batteas, D. E. Bergbreiter, Langmuir 2008, 24, 4245
112. P. Li, X. Lim, Y. Zhu, T. Yu, C. K. Ong, Z. Shen, A. T. S. Wee, C. H. Sow J. Phys. Chem. B 2007, 111, 1672
113. K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, K. K. Gleason, Nano Lett. 2003, 3, 1701
114. J. L. Bahr, E. T. Mickelson, M. J. Bronikowski, R. E. Smalley, J. M. Tour, Chem. Commun. 2001, 193
115. L. Feng, Z. Tang, J. Zhai, Y. Song, B. Liu, Y. Ma, Z. Yang, L. Jiang, D. Zhu, Angew. Chem. Int. Ed. 2003, 42, 4217
116. Z. Guo, F. Zhou, J. Hao, W. Liu. J. Am. Chem. Soc. 2005, 127, 15670
117. C. F. Wang, Y. T. Wang, P. H. Tung, S. W. Kuo, C. H. Lin, Y. C. Sheen, F. C. Chang, Langmuir, 2006, 22, 8289
118. Y. Zhu, J. Zhang, Y. Zheng, Z. Huang, L. Feng, L. Jiang, Adv. Funct. Mater. 2006, 16, 568
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43352-
dc.description.abstract隨著科技不斷的進步,物體表面自清潔功能是奈米科技廣為討論的研究課題,透過自然界蓮花效應得到超疏水性自清潔作用機制的基本原理:低表位能的疏水化學物質及粗糙度。奈米碳管物性、化性或材料特性上均有著顯著非凡的表現,由於奈米碳管本身疏水的化學特性,在尺寸上為奈米等級的結構,以奈米碳管作為超疏水的材料在近年以來為熱門研究議題。目前文獻中奈米碳管應用於超疏水特性方面多透過含氟、長烷基鏈等低表位能物質進行化學改質或化學沈積法排列奈米碳管製成具有雙尺寸粗糙度表面,其製程相對較為繁瑣,因此研發出簡單之製程,僅需透過聚異丁烯胺將奈米碳管分散之溶液塗佈於基材上及可製備超疏水之複材薄膜。利用不同莫耳比例之聚異丁烯接枝丁二酸酐共聚物和聚氧丙烯嵌段三胺共聚物反應合成之聚異丁烯胺共聚物衍生物,含有能與奈米碳管管壁產生強非共價作用力之胺基,經過超音波震盪吸附於脫束之獨立奈米碳管上;疏水端聚異丁烯鏈段在有機溶劑中為提供溶解端,能有效的將獨立之奈米碳管經由鏈段造成空間阻礙使其分散於有機溶劑中,製備穩定分散之奈米碳管溶液。將聚異丁烯胺和奈米碳管分散液塗佈於基材上製備之複材薄膜,由於奈米碳管聚集產生之粗糙度及異丁烯胺之低表面能化學特性,使該複材薄膜具備超疏水的特性。而改變奈米碳管與聚異丁烯胺比例形成之複材薄膜,經由粗糙度之差異可操控其表面親疏水特性,有高於160度之接觸角。進一步增強薄膜的強度,聚異丁烯胺可同時當硬化劑與雙酚A二縮水甘油醚型環氧酯樹脂進行硬化反應,製備成強度佳之奈米碳管/聚異丁烯胺/環氧酯樹脂複材薄膜,其結構強韌穩定並在長時間的浸水處理、強酸強鹼之環境下或物理性刮磨依然能保有超疏水之特性。zh_TW
dc.description.abstractWe report a facile method for preparation of the robust superhydrophobic film by fabricated carbon nanotubes (CNTs) in the matrix of polyamine-cured epoxy nanocomposite. The requisite polyisobutylene-amines (PIB-amine) were prepared from amidation of PIB-succinic anhydride with polyoxypropylene-triamine at various molar ratios The PIB-amines, consisting of multiple amindoacid functionalities and have chemical structures of linear molecule with one PIB terminal, two PIB terminal and branch with three PIB terminal, serve as an intensive noncovalent bonding force for de-bundling CNTs aggregates into individual tubes. The CNTs dispersion was analyzed by UV-vis absorption and transmission electron microscopy (TEM). The finely dispersed CNTs were consequently self-aligned along with the hydrophobic PIB alkyls into micrometer scale of roughness and showed superhydrophobic and self-cleaning phenomenon. The morphology of the align CNTs surface was observed by scanning electron microscopy (SEM) and the result showed the roughness scale is around 1−4 μm. Furthermore, the CNTs dispersion was introduced into diglycidylether of bisphenol-A. Regarded PIB-triamine as a curing agent, the robust polyamine-epoxy nanocomposite can be generated and demonstrated a superhydrophobic property with the measurement of water contact angle up to 160o. The polyamine-epoxy nanocomposite was self-standing and stable against the immersion in water with a wide range of pH and a mechanical scratching. The convenient manipulation of PIB-amine structure, the PIB-amine/CNTs/epoxy nanocomposite and curing conditions may represent an advance for superhydrophobic coating materials that conventionally required CNTs organic modification or fluorinated alkyl compounds as reported in literature.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:51:22Z (GMT). No. of bitstreams: 1
ntu-98-R96549015-1.pdf: 6968150 bytes, checksum: 3ba2c8db2f5a04af9bf816e8a328a8a6 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsACKNOWLEDGEMENT........................................................................ -Ⅰ-
摘要…..............................................................................................- Ⅱ -
ABSTRACT..........................................................................................- Ⅲ -
LIST OF FIGURES................................................................................- Ⅵ -
LIST OF TABLES..................................................................................- Ⅸ -
CHAPTER ONE INTRODUCTION ..........................................................- 1 -
1.1. Overview......................................................................................- 1 -
1.2 Theoretical Background of Wettability ..........................................- 3 -
1.3 Structures and Characterization of Superhydrophobic Surface.........- 5 -
CHAPTER TWO LITERATURE REVIEW .....................................................- 7 -
2.1 Methods Used for Preparation of Superhydrophobic Surfaces.........- 7 -
2.1.1 Physical Methods…………………….......................................- 7 -
2.1.2 Chemical Methods……………………....................................- 11 -
2.2. Low-Surface-Energy Modification on Rough Surfaces...................- 16 -
2.3. Introduction of Carbon Nanotubes...............................................- 17 -
2.4. Overview of Dispersibility of CNTs..............................................- 20 -
2.4.1 Chemical Modification.........................................................- 20 -
2.4.2 Physical Absorption.............................................................- 22 -
2.4.3 Geometric Shaped Diseprsion.............................................- 25 -
2.5 The Wettability of Carbon Nanotubes .........................................- 26 -
CHAPTER THREE MATERIALS AND EXPERIMENTS.................................- 31 -
3.1 Materials ....................................................................................- 31 -
3.2 Experiments..................................................................................- 32 -
3.3 Measurements……………............................................................- 34 -
CHAPTER FOUR RESULTS AND DISCUSSION.......................................- 35 -
4.1 Synthesis and Characterization of PIB-MA-amine Derivatives ......- 35 -
4.2 Dispersing Property of CNTs and Polymers..................................- 37 -
4.3 Water Contact Angles of the Polymer/CNTs Films.........................- 40 -
4.4 The Morphologies of the Polymer/CNTs Surfaces..........................- 43 -
4.5 Control the Wettability of the Films..............................................- 44 -
4.6 The Effect of pH Values on Contact Angles...................................- 47 -
4.7 Enhance the Robustness of the Films by Epoxy Resin Addition.....- 48 -
CHAPTER FIVE CONCLUSION ............................................................- 50 -
CHAPTER SIX REFERENCES................................................................- 51 -
dc.language.isoen
dc.subject奈米碳管zh_TW
dc.subject超疏水表面zh_TW
dc.subject薄膜zh_TW
dc.subject聚異丁烯胺zh_TW
dc.subjectCNTsen
dc.subjectsuperhydrophobic surfaceen
dc.subjectpolyisobutylene-aminesen
dc.subjectfilmen
dc.title聚異丁烯胺與奈米碳管控制粗糙度製備超疏水表面zh_TW
dc.titleFabrication of Robust Superhydrophobic Surface with Roughness Controls by Carbon Nanotubes and Polyisobutylaminesen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林江珍(Jaing-Jen Lin),邱文英,謝國煌
dc.subject.keyword超疏水表面,薄膜,奈米碳管,聚異丁烯胺,zh_TW
dc.subject.keywordsuperhydrophobic surface,film,CNTs,polyisobutylene-amines,en
dc.relation.page57
dc.rights.note有償授權
dc.date.accepted2009-07-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
6.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved