Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43348
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡務亮(Wuh-Liang Hwu)
dc.contributor.authorChiung-Chuan Wuen
dc.contributor.author吳瓊娟zh_TW
dc.date.accessioned2021-06-15T01:51:07Z-
dc.date.available2010-03-07
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-07-03
dc.identifier.citation李明亮主編(民93)。脂肪酸氧化異常(pp.230-231)。代謝性疾病-台灣經驗。台中:行政院衛生署國民健康局
蔣思慧、蕭廣仁:國內新生兒先天代謝異常疾病篩檢項目增減可行性之探討。優生保健暨罕見疾病防治國際學術研討會論文集,2005;53-76。
台大新生兒篩檢室
http://ntuh.mc.ntu.edu.tw/gene/nbssite/NEWS/data.htm
NCBI:OMIM#212140- http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=212140
B. Wilcken, V. Wiley, K.G. Sim, K. Carpenter, Carnitine transporter defect diagnosed by newborn screening with electrospray tandem mass spectrometry, J. Pediatr. 138 (2001) 581–584.
C. Amat Di San Filippo, M. Pasquali, N. Longo, Pharmacological rescue of carnitine transport in primary carnitine deficiency, Hum.Mutat. 27 (2006) 513–523.
C. Roe, J. Ding, Mitochondrial fatty acid oxidation disorders, in: C. Scriver, A. Beaudet W. Sly, D. Valle (Eds.), The Metabolic and Molecular Bases of Inherited Disease, McGraw-Hill, New York, 2001, pp. 2297–2326.
Fallin D, Schork NJ. Accuracy of haplotype frequency estimation for biallelic loci via the expectation-maximization algorithm for unphased diploid genotype data. Am J Hum Genet 2000;67:947-959.
F. Scaglia, N. Longo, Primary and secondary alterations of neonatal carnitine metabolism, Semin. Perinatol. 23 (1999) 152–161.
A. Koizumi, J. Nozaki, T. Ohura, T. Kayo, Y. Wada, J. Nezu, R. Ohashi,
I. Tamai, Y. Shoji, G. Takada, S. Kibira, T. Matsuishi, A.Tsuji, Genetic epidemiology of the carnitine transporter OCTN2 gene in a Japanese population and phenotypic characterization in Japanese pedigrees with primary systemic carnitine deficiency, Hum. Mol. Genet. 8 (1999) 2247–2254.
Burwinkel, B.; Kreuder, J.; Schweitzer, S.; Vorgerd, M.; Gempel, K.; Gerbitz, K.-D.; Kilimann, M. W. : Carnitine transporter OCTN2 mutations in systemic primary carnitine deficiency: a novel Arg169Gln mutation and a recurrent Arg282ter mutation associated with an unconventional splicing abnormality. Biochem. Biophys. Res. Commun. 261: 484-487, 1999.
Di San Filippo, C. A.; Pasquali, M.; Longo, N. : Pharmacological rescue of carnitine transport in primary carnitine deficiency. Hum. Mutat. 27: 513-523, 2006.
Dobrowolski, S. F.; McKinney, J. T.; di San Filippo, C. A.; Sim, K. G.; Wilcken, B.; Longo, N. : Validation of dye-binding/high-resolution thermal denaturation for the identification of mutations in the SLC22A5 gene. Hum. Mutat. 25: 306-313, 2005.
Heintzman, H. D.; Stuart, R. K.; Hon, G.; Fu, Y.; Ching, C. W.; Hawkins, R. D.; Barrera, L. O.; Van Calcar, S.; Qu, C.; Ching, K. A.; Wang, W.; Weng, Z.; Green, R. D.; Crawford, G. E.; Ren, B. : Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genet. 39: 311-318, 2007.
Kristina, A. S.; Margareta, H.; Adolf, M.; Georg, H.; Rene, R.; Hermann, M,; Sylvia, S.; Franz, W.; Felix, V.; Jan, L.; Olaf, A. B. : Long-Term Stability of Amino Acids and Acylcarnitines in Dried Blood Spots. Clinical Chemistry. 53:4: 717-722, 2007
Lamhonwah, A.-M.; Olpin, S. E.; Pollitt, R. J.; Vianey-Saban, C.; Divry, P.; Guffon, N.; Besley, G. T. N.; Onizuka, R.; De Meirleir, L. J.; Cvitanovic-Sojat, L.; Baric, I.; Dionisi-Vici, C.; Fumic, K.; Maradin, M.; Tein, I. : Novel OCTN2 mutations: no genotype-phenotype correlations: early carnitine therapy prevents cardiomyopathy. Am. J. Med. Genet. 111: 271-284, 2002.
Lamhonwah, A.-M.; Tein, I. : Carnitine uptake defect: frameshift mutations in the human plasmalemmal carnitine transporter gene. Biochem. Biophys. Res. Commun. 252: 396-401, 1998.
Marques, J. S. : Dilated cardiomyopathy caused by plasma membrane carnitine transport defect. J. Inherit. Metab. Dis. 21: 428-429, 1998.
Martinez, A.; del Carmen Martin, M.; Mendoza, J. L.; Taxonera, C.; Diaz-Rubio, M.; de la Concha, E. G.; Urcelay, E. : Association of the organic cation transporter OCTN genes with Crohn's disease in the Spanish population. Europ. J. Hum. Genet. 14: 222-226, 2006.
Matsuishi, T.; Hirata, K.; Terasawa, K.; Kato, H.; Yoshino, M.; Ohtaki, E.; Hirose, F.; Nonaka, I.; Sugiyama, N.; Ohta, K. : Successful carnitine treatment in two siblings having lipid storage myopathy with hypertrophic cardiomyopathy. Neuropediatrics 16: 6-12, 1985.
Nezu, J.; Tamai, I.; Oku, A.; Ohashi, R.; Yabuuchi, H.; Hashimoto, N.; Nikaido, H.; Sai, Y.; Koizumi, A.; Shoji, Y.; Takada, G.; Matsuishi, T.; Yoshino, M.; Kato, H.; Ohura, T.; Tsujimoto, G.; Hayakawa, J.; Shimane, M.; Tsuji, A. : Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nature Genet. 21: 91-94, 1999.
Peltekova, V. D.; Wintle, R. F.; Rubin, L. A.; Amos, C. I.; Huang, Q.; Gu, X.; Newman, B.; Van Oene, M.; Cescon, D.; Greenberg, G.; Griffiths, A. M.; St George-Hyslop, P. H.; Siminovitch, K. A. : Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nature Genet. 36: 471-475, 2004.
Petra, O.; Kristen, V.V.; Emmaline, C.; Michael, R.; X.Kate, Z.; Katherine, B.S.; Joan, K.; Marsha, F. B. : Effect of Sample Collection on α-Galactosidase A Enzyme Activity Measurements in Dried Blood Spots on Filter Paper. Clinical Chimica Acta (2009), dio: 10.1016/j.cca.2009.02.008
Rahbeeni, Z.; Vaz, F. M.; Al-Hussein, K.; Bucknall, M. P.; Ruiter, J.; Wanders, R. J.; Rashed, M. S. : Identification of 2 novel mutations in OCTN2 from 2 Saudi patients with systemic carnitine deficiency. J. Inherit. Metab. Dis. 25: 363-369, 2002.
Rodrigues Pereira, R.; Scholte, H. R.; Luyt-Houwen, I. E. M.; Vaandrager-Verduin, M. H. M. : Cardiomyopathy associated with carnitine loss in kidneys and small intestine. Europ. J. Pediat. 148: 193-197, 1988.
Scholte, H. R.; Rodrigues Pereira, R.; de Jonge, P. C.; Luyt-Houwen, I. E. M.; Hedwig, M.; Verduin, M.; Ross, J. D. : Primary carnitine deficiency. J. Clin. Chem. Clin. Biochem. 28: 351-357, 1990.
Schipper RF, D’Amaro J, de Lange P, Schreuder GM, van Rood JJ, Oudshoorn M.
Validation of haplotype frequency estimation methods. Hum Immunol 1998;59:518-523.
Schimmenti LA, Crombez EA, Schwahn BC, Heese BA, Wood TC, Schroer RJ, Bentler K, Cederbaum S, Sarafoglou K, McCann M, Rinaldo P, Matern D, di San Filippo CA, Pasquali M, Berry SA, Longo N. Expanded newborn screening identifies maternal primary carnitine deficiency. Mol Genet Metab. 2007 Apr;90(4):441-5. Epub 2006 Nov 28.
Shoji, Y.; Koizumi, A.; Kayo, T.; Ohata, T.; Takahashi, T.; Harada, K.; Takada, G. : Evidence for linkage of human primary systemic carnitine deficiency with D5S436: a novel gene locus on chromosome 5q. Am. J. Hum. Genet. 63: 101-108, 1998.
Silverberg, M. S.; Duerr, R. H.; Brant, S. R.; Bromfield, G.; Datta, L. W.; Jani, N.; Kane, S. V.; Rotter, J. I.; Schumm, L. P.; Steinhart, A. H.; Taylor, K. D.; Yang, H.; Cho, J. H.; Rioux, J. D.; Daly, M. J. : Refined genomic localization and ethnic differences observed for the IBD5 association with Crohn's disease. Europ. J. Hum. Genet. 15: 328-335, 2007.
Tamai, I.; Ohashi, R.; Nezu, J.; Yabuuchi, H.; Oku, A.; Shimane, M.; Sai, Y.; Tsuji, A. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J. Biol. Chem. 273: 20378-20382, 1998.
Tang, N. L.; Hui, J.; Law, L. K.; To, K. F.; Ruiter, J. P.; IJlst, L.; Wanders, R. J.; Ho, C. S.; Fok, T. F.; Yuen, P. M.; Hjelm, N. M. : Primary plasmalemmal carnitine transporter defect manifested with dicarboxylic aciduria and impaired fatty acid oxidation. J. Inherit. Metab. Dis. 21: 423-425, 1998.
Tang, N. L. S.; Ganapathy, V.; Wu, X.; Hui, J.; Seth, P.; Yuen, P. M. P.; Fok, T. F.; Hjelm, N. M. : Mutations of OCTN2, an organic cation/carnitine transporter, lead to deficient cellular carnitine uptake in primary carnitine deficiency. Hum. Molec. Genet. 8: 655-660, 1999.
Tang, N. L. S.; Hwu, W. L.; Chan, R. T.; Law, L. K.; Fung, L. M.; Zhang, W. M. : A founder mutation (R254X) of SLC22A5 (OCTN2) in Chinese primary carnitine deficiency patients. (Abstract) Hum Mutat. 20: 232 only, 2002. Note: Full article online.
Tein, I.; De Vivo, D. C.; Bierman, F.; Pulver, P.; De Meirleir, L. J.; Cvitanovic-Sojat, L.; Pagon, R. A.; Bertini, E.; Dionisi-Vici, C.; Servidei, S.; Dimauro, S. : Impaired skin fibroblast carnitine uptake in primary systemic carnitine deficiency manifested by childhood carnitine-responsive cardiomyopathy. Pediat. Res. 28: 247-255, 1990.
Ute H. ; Jeanette K.; Johannes S.; Michael P.; Nils J.; Ulrike S.; Oliver B. : EDTA in Dried Blood Spots Leads to False Results in Neonatal Endocrinologic Screening. Clinical Chemistry 54:3 : 602-605, 2008.
Vaz, F. M.; Scholte, H. R.; Ruiter, J.; Hussaarts-Odijk, L. M.; Rodrigues Pereira, R.; Schweitzer, S.; de Klerk, J. B. C.; Waterham, H. R.; Wanders, R. J. A. : Identification of two novel mutations in OCTN2 of three patients with systemic carnitine deficiency. Hum. Genet. 105: 157-161, 1999.
Wang, Y.; Korman, S. H.; Ye, J.; Gargus, J. J.; Gutman, A.; Taroni, F.; Garavaglia, B.; Longo, N. : Phenotype and genotype variation in primary carnitine deficiency. Genet. Med. 3: 387-392, 2001.
Wang, Y.; Taroni, F.; Garavaglia, B.; Longo, N. : Functional analysis of mutations in the OCTN2 transporter causing primary carnitine deficiency: lack of genotype-phenotype correlation. Hum. Mutat. 16: 401-407, 2000.
Wang, Y.; Ye, J.; Ganapathy, V.; Longo, N. : Mutations in the organic cation/carnitine transporter OCTN2 in primary carnitine deficiency. Proc. Nat. Acad. Sci. 96: 2356-2360, 1999.
Wu, X.; Prasad, P. D.; Leibach, F. H.; Ganapathy, V. : cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem. Biophys. Res. Commun. 246: 589-595, 1998.
Y. Wang, S.H. Korman, J. Ye, J.J. Gargus, A. Gutman, F. Taroni, B. Garavaglia, N. Longo, Phenotype and genotype variation in primary carnitine deficiency, Genet. Med. 3 (2001) 387–392.
Y. Wang, J. Ye, V. Ganapathy, N. Longo, Mutations in the organic cation/carnitine transporter OCTN2 in primary carnitine deficiency, Proc. Natl. Acad. Sci. USA 96 (1999) 2356–2360.
Yamak, A. A.; Bitar, F.; Karam, P.; Nemer, G. : Exclusive cardiac dysfunction in familial primary carnitine deficiency cases: a genotype-phenotype correlation. Clin. Genet. 72: 59-62, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43348-
dc.description.abstract原發性肉鹼缺乏症為OCTN2基因突變所引起。目前篩檢原發性肉鹼缺乏症的方式為分析血片游離肉鹼濃度;但是由於受到母體之影響,患嬰體內之肉鹼濃度在出生第二至三天篩檢進行時可能還沒有降的很低,而沒有被篩檢出來。文獻指出,南方中國人有OCTN2基因之常見突變c.981C>T (p.R254X),因此我們想利用基因分析來提高新生兒篩檢原發性肉鹼缺乏症之檢出率。
本研究之方法為檢測血片游離肉鹼濃度偏低檢體之OCTN2基因p.R254X突變,以協助篩檢的進行。本研究利首先分析348件隨機DNA檢體,探索p.R254X在台灣族群之盛行率;本研究接著分析48件游離肉鹼濃度偏低(≦11µM)之新生兒篩檢血片,進行OCTN2基因p.R254X之突變偵測。
本研究首先發現,血片利用Methanol法、煮沸法、或QIAamp法抽取genomic DNA時,以QIAamp法萃取之實驗結果最好。p.R254X基因分析顯示348件控制組檢體中有2名為p.R254X之異型合子;48件實驗組血片中也有2名為異型合子。因此,控制組及實驗組之帶因頻率分別為1/174及1/24;與文獻報告的帶因頻率相比,控制組無差異,但實驗組帶因率較高(p=0.01996)。
游離肉鹼濃度偏低的新生兒,如果為p.R254X帶因時,其為原發性肉鹼缺乏症之機率將提高。這些新生兒應作進一步追蹤以了解是否罹病。因此,此項方法將可在不提高篩檢偽陽性率的條件下,增加新生兒篩檢偵測原發性肉鹼缺乏症之敏感度。
zh_TW
dc.description.abstractMutations in the SLC22A5 gene, which encodes the plasma membrane carnitine transporter OCTN2, cause primary carnitine deficiency (PCD). Currently, PCD is screened in newborns using free carnitine level as a marker. However, owing to the high free carnitine level in the maternal circulation, the affected babies may not have a free carnitine level low enough to be picked up by screening. Previously, the OCTN2 gene c.981 C>T (p.R254X) mutation was found to be common in the Southern Chinese population. Therefore, in this study we want to see if molecular diagnosis could enhance newborn screening of PCD.
In this study, we analyzed blood spot DNA OCTN2 gene p.R254X mutation. We first analyzed 348 random anonymous control DNA samples to see the prevance of this mutation in the population. We then analyzed 48 blood spot samples in which free carnitine level was lower than 11µM (the standard cut off for free carnitine was lower than 6.44 μΜ).
We found that among the three methods for blood spot DNA extreaction (the methanol method, boiling method, and QIAamp method); the QIAmp method gave the best result. We then found two p.R254X heterozygotes in the 348 control DNA (1in 174); another two p.R254X heterozygotes in the 48 samples with low free carnitine level (1 in 24). In comparison to previous data, newborns with low free carnitine level did have a higher prevalence of OCTN2 gene p.R254X mutation (p=0.01996). Babies who had both low free carnitine and OCTN2 mutation should have a higher chance to be a patient of primary carnitine deficiency, and their disease status should be determined. This method, therefore, increases the sensitivity of detecton of PCD without increase the false positive rate of the screening.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:51:07Z (GMT). No. of bitstreams: 1
ntu-98-P95448006-1.pdf: 1167138 bytes, checksum: 5d3f71fa83150ccdf0f5c6c1ed06efd8 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要 1
Abstract 2
第一章 緒論 3
第一節 新生兒先天代謝異常篩檢 (neonatal screening for inborn errors of metabolism) 3
第二節 原發性肉鹼缺乏症(Primary Carnitine Deficiency) 4
第三節 新生兒篩檢原發性肉鹼缺乏症 7
第二章 Primary Carnitine Deficiency與SLC22A5關聯性的遺傳研究 7
第一節 臨床診斷 8
第二節 致病病因---SLC22A5突變 9
第三章 研究動機及目的 14
第一節 研究動機 14
第一節 研究目的 14
第四章 基本假說(working hypothesis) 15
第五章 實驗材料與方法 16
第一節 實驗材料 16
A. 實驗對象( Patients ) 16
B. 引子設計( Primer design ) 16
C. 限制片段長度多型性基因型分析(restriction fragments length polymorphism RFLP genotyping) 16
D. 各項實驗所需試劑 17
第二節 實驗方法 18
第六章 實驗結果 28
第一節 比較萃取Genomic DNA的方式 28
第二節 OCTN2熱點R254X突變分析 29
第三節 實驗統計檢定及分析 30
1. 正常對照組OCTN2基因p.R254X對偶基因頻率與文獻報告的比較 31
2. 比較不同於文獻的血液樣本,進行OCTN2基因p.R254X( Founder hot spot )突變分析篩檢原發性肉鹼缺乏症的效果是否具差異 31
3. 探討血片樣本OCTN2基因p.R254X ( Founder hot spot )突變頻率是否與正常對照組不同 31
4. 以卡方檢定或Mann-Whitney Rank-Sum test分析對偶基頻率CC(正常基因型)及CT(異基因型)其游離肉鹼濃度分布與母體是否有差別 32
5. 依照游離肉鹼濃度做次分組,以卡方檢定分析C0≦6.44和6.44<C0≦11的新生兒帶有p.R254X突變之帶因率是否相同 32
第七章 討論 34
第八章 結論與展望 36
第九章 參考文獻 38

表目錄
表 一、Exon 4 p.R254X RFLP 所使用的 primer / Mismatch primer 及限制酶 44
表 二、比較Methanol、ddH2O、QIAamp 處理血片後PCR-RFLP的優缺點 45
表 三、追蹤基因篩檢為原發性肉鹼缺乏症(PCD)帶原者其臨床Profile 47
表 四、DBS-OCTN2-R254X for PCD acylcarnitine profile--arranged by C0/(C16+C18) 48
表 五、DBS-OCTN2-R254X for PCD acylcarnitine profile--arranged by C16 49
圖目錄
圖 一、Flowchart of primary carnitine deficiency analysis by DNA 50
圖 二、新生兒篩檢OCTN2基因p.R254X突變分析實驗設計概觀 51
圖 三、OCTN2基因p.R254X突變點PCR-RFLP示意圖 52
圖 四、實驗血液樣本編號7552進行Sequencing後確定為Heterozygote 53
圖 五、血液血片不同濃度Template 行OCTN2-p.R254X片段擴增後比較 54
圖 六、以Methanol處理血片後行OCTN2-p.R254X結果 54
圖 七、血片以ddH2O方法處理後行OCTN2-p.R254X結果 55
圖 八、以QIAamp處理血片後行OCTN2-p.R254X結果 55
圖 九、97044228以Dde I 進行p.R254X- RFLP結果 56
圖 十、Improved flowchart of primary carnitine deficiency analysis by DNA 56
dc.language.isozh-TW
dc.title原發性肉鹼缺乏症之新生兒篩檢個案的SLC22A5 (OCTN2)基因R254X突變分析zh_TW
dc.titleNeonatal screening of a mutation (R254X) of SLC22A5 (OCTN2) in Primary Carnitine Deficiencyen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee余家利(Chia-Li YU),簡穎秀(Yin-Hsiu Chien)
dc.subject.keyword原發性肉鹼缺乏症,血片,游離肉鹼濃度,OCTN2基因熱點R254X,zh_TW
dc.subject.keywordPrimary carnitine deficiency (PCD),Dried Blood spot (DBS),Free carnitine (C0),OCTN2 Founder hot spot R254X,en
dc.relation.page61
dc.rights.note有償授權
dc.date.accepted2009-07-03
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
1.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved