請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43320完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周崇熙 | |
| dc.contributor.author | Chia-Lan Nicole Wang | en |
| dc.contributor.author | 王嘉蘭 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:49:23Z | - |
| dc.date.available | 2009-07-14 | |
| dc.date.copyright | 2009-07-14 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-06 | |
| dc.identifier.citation | Akira, S., 2004, Toll receptor families: structure and function. Semin Immunol 16, 1-2.
Anonymous, 1989, Salmonella enteritidis phage type 4 and hens' eggs. Lancet 1, 280-281. Anonymous, 2000, National Animal Health Monitoring System. Salmonella enterica serotype Enteritidis in table egg layers in the U.S. United States Department of Agricuture. . Fort Collins, CO: National Animal Health Monitorsing System. Anonymous, 2006, Large variation in prevalence of Salmonella in laying hen flocks in EU: EFSA preliminary report. Euro Surveill 11, E060615 060614. Athie-Morales, V., Smits, H.H., Cantrell, D.A., Hilkens, C.M., 2004, Sustained IL-12 signaling is required for Th1 development. J Immunol 172, 61-69. Bahr, J., 1990, The avian ovary: model for endocrine studies. J Exp Zool Suppl 4, 192-194. Bahr, J.M., Wang, S.C., Huang, M.Y., Calvo, F.O., 1983, Steroid concentrations in isolated theca and granulosa layers of preovulatory follicles during the ovulatory cycle of the domestic hen. Biol Reprod 29, 326-334. Barrow, P.A., Huggins, M.B., Lovell, M.A., Simpson, J.M., 1987, Observations on the pathogenesis of experimental Salmonella typhimurium infection in chickens. Res Vet Sci 42, 194-199. Barua, A., Yoshimura, Y., 2004, Ovarian cell-mediated immune response to Salmonella enteritidis infection in laying hens (Gallus domesticus). Poult Sci 83, 997-1002. Baumler, A.J., Hargis, B.M., Tsolis, R.M., 2000, Tracing the origins of Salmonella outbreaks. Science 287, 50-52. Beal, R.K., Powers, C., Wigley, P., Barrow, P.A., Smith, A.L., 2004, Temporal dynamics of the cellular, humoral and cytokine responses in chickens during primary and secondary infection with Salmonella enterica serovar Typhimurium. Avian Pathol 33, 25-33. Berndt, A., Wilhelm, A., Jugert, C., Pieper, J., Sachse, K., Methner, U., 2007, Chicken cecum immune response to Salmonella enterica serovars of different levels of invasiveness. Infect Immun 75, 5993-6007. Boyd, A., Philbin, V.J., Smith, A.L., 2007, Conserved and distinct aspects of the avian Toll-like receptor (TLR) system: implications for transmission and control of bird-borne zoonoses. Biochem Soc Trans 35, 1504-1507. Boyd, Y., Goodchild, M., Morroll, S., Bumstead, N., 2001, Mapping of the chicken and mouse genes for toll-like receptor 2 (TLR2) to an evolutionarily conserved chromosomal segment. Immunogenetics 52, 294-298. Braden, C.R., 2006, Salmonella enterica serotype Enteritidis and eggs: a national epidemic in the United States. Clin Infect Dis 43, 512-517. Brisbin, J.T., Zhou, H., Gong, J., Sabour, P., Akbari, M.R., Haghighi, H.R., Yu, H., Clarke, A., Sarson, A.J., Sharif, S., 2008, Gene expression profiling of chicken lymphoid cells after treatment with Lactobacillus acidophilus cellular components. Dev Comp Immunol 32, 563-574. Brogan, M.D., Behrend, E.N., Kemppainen, R.J., 2001, Regulation of Dexras1 expression by endogenous steroids. Neuroendocrinology 74, 244-250. Canales, R.D., Luo, Y., Willey, J.C., Austermiller, B., Barbacioru, C.C., Boysen, C., Hunkapiller, K., Jensen, R.V., Knight, C.R., Lee, K.Y., Ma, Y., Maqsodi, B., Papallo, A., Peters, E.H., Poulter, K., Ruppel, P.L., Samaha, R.R., Shi, L., Yang, W., Zhang, L., Goodsaid, F.M., 2006, Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol 24, 1115-1122. Chang, Y.H., 2000, Prevalence of Salmonella spp. in poultry broilers and shell eggs in Korea. J Food Prot 63, 655-658. Cheeseman, J.H., Kaiser, M.G., Ciraci, C., Kaiser, P., Lamont, S.J., 2007, Breed effect on early cytokine mRNA expression in spleen and cecum of chickens with and without Salmonella enteritidis infection. Dev Comp Immunol 31, 52-60. Cheeseman, J.H., Levy, N.A., Kaiser, P., Lillehoj, H.S., Lamont, S.J., 2008, Salmonella Enteritidis-induced alteration of inflammatory CXCL chemokine messenger-RNA expression and histologic changes in the ceca of infected chicks. Avian Dis 52, 229-234. Chiang, H.I., Swaggerty, C.L., Kogut, M.H., Dowd, S.E., Li, X., Pevzner, I.Y., Zhou, H., 2008, Gene expression profiling in chicken heterophils with Salmonella enteritidis stimulation using a chicken 44 K Agilent microarray. BMC Genomics 9, 526. Cox, W.G., Beaudet, M.P., Agnew, J.Y., Ruth, J.L., 2004, Possible sources of dye-related signal correlation bias in two-color DNA microarray assays. Anal Biochem 331, 243-254. Dao, L.R.-L., Wu, L.-S., 2000. Establishment of Steroid Hormone Secretion Model of Ovarian Follocular Cells in Tsaiya duck. Thesis. National Taiwan University, Taiwan. De Buck, J., Van Immerseel, F., Haesebrouck, F., Ducatelle, R., 2004, Colonization of the chicken reproductive tract and egg contamination by Salmonella. J Appl Microbiol 97, 233-245. Desmidt, M., Ducatelle, R., Haesebrouck, F., 1998, Research notes: Immunohistochemical observations in the ceca of chickens infected with Salmonella enteritidis phage type four. Poult Sci 77, 73-74. Ebel, E., Schlosser, W., 2000, Estimating the annual fraction of eggs contaminated with Salmonella enteritidis in the United States. Int J Food Microbiol 61, 51-62. Ellestad, L.E., Carre, W., Muchow, M., Jenkins, S.A., Wang, X., Cogburn, L.A., Porter, T.E., 2006, Gene expression profiling during cellular differentiation in the embryonic pituitary gland using cDNA microarrays. Physiol Genomics 25, 414-425. Ernst, R.K., Guina, T., Miller, S.I., 1999, How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. J Infect Dis 179 Suppl 2, S326-330. Follet, B.K., D. T. Davies, 1979, The endocrine control of ovulation in birds. New York 323-344 pp. Gast, R.K., 1994, Understanding Salmonella enteritidis in laying chickens: the contributions of experimental infections. Int J Food Microbiol 21, 107-116. Giansanti, F., Giardi, M.F., Botti, D., 2006, Avian cytokines--an overview. Curr Pharm Des 12, 3083-3099. Guard-Petter, J., 2001, The chicken, the egg and Salmonella enteritidis. Environ Microbiol 3, 421-430. Hasenstein, J.R., Lamont, S.J., 2007, Chicken gallinacin gene cluster associated with Salmonella response in advanced intercross line. Avian Dis 51, 561-567. Hedberg, C.W., David, M.J., White, K.E., MacDonald, K.L., Osterholm, M.T., 1993, Role of egg consumption in sporadic Salmonella enteritidis and Salmonella typhimurium infections in Minnesota. J Infect Dis 167, 107-111. Heid, C.A., Stevens, J., Livak, K.J., Williams, P.M., 1996, Real time quantitative PCR. Genome Res 6, 986-994. Herrmann, M., Scholmerich, J., Straub, R.H., 2002, Influence of cytokines and growth factors on distinct steroidogenic enzymes in vitro: a short tabular data collection. Ann N Y Acad Sci 966, 166-186. Higgs, R., Cormican, P., Cahalane, S., Allan, B., Lloyd, A.T., Meade, K., James, T., Lynn, D.J., Babiuk, L.A., O'Farrelly, C., 2006, Induction of a novel chicken Toll-like receptor following Salmonella enterica serovar Typhimurium infection. Infect Immun 74, 1692-1698. Howard, Z.R., Moore, R.W., Zabala-Diaz, I.B., Landers, K.L., Byrd, J.A., Kubena, L.F., Nisbet, D.J., Birkhold, S.G., Ricke, S.C., 2005, Ovarian laying hen follicular maturation and in vitro Salmonella internalization. Vet Microbiol 108, 95-100. Hu, X., Chen, J., Wang, L., Ivashkiv, L.B., 2007, Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. J Leukoc Biol 82, 237-243. Jenkins, S.A., 2006. Characterization of glucocorticoid-induced changes in gene expression in the embryonic pituitary gland. Dissertation. University of Maryland, College Park, United States -- Maryland. Jones, B.D., Ghori, N., Falkow, S., 1994, Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med 180, 15-23. Kaiser, M.G., Cheeseman, J.H., Kaiser, P., Lamont, S.J., 2006, Cytokine expression in chicken peripheral blood mononuclear cells after in vitro exposure to Salmonella enterica serovar Enteritidis. Poult Sci 85, 1907-1911. Kaiser, P., Poh, T.Y., Rothwell, L., Avery, S., Balu, S., Pathania, U.S., Hughes, S., Goodchild, M., Morrell, S., Watson, M., Bumstead, N., Kaufman, J., Young, J.R., 2005, A genomic analysis of chicken cytokines and chemokines. J Interferon Cytokine Res 25, 467-484. Kaiser, P., Rothwell, L., Galyov, E.E., Barrow, P.A., Burnside, J., Wigley, P., 2000, Differential cytokine expression in avian cells in response to invasion by Salmonella typhimurium, Salmonella enteritidis and Salmonella gallinarum. Microbiology 146 Pt 12, 3217-3226. Kemppainen, R.J., Behrend, E.N., 1998, Dexamethasone rapidly induces a novel ras superfamily member-related gene in AtT-20 cells. J Biol Chem 273, 3129-3131. Kogut, M.H., Genovese, K.J., Lowry, V.K., 2001, Differential activation of signal transduction pathways mediating phagocytosis, oxidative burst, and degranulation by chicken heterophils in response to stimulation with opsonized Salmonella enteritidis. Inflammation 25, 7-15. Kubista, M., Andrade, J.M., Bengtsson, M., Forootan, A., Jonak, J., Lind, K., Sindelka, R., Sjoback, R., Sjogreen, B., Strombom, L., Stahlberg, A., Zoric, N., 2006, The real-time polymerase chain reaction. Mol Aspects Med 27, 95-125. Leutz, A., Beug, H., Graf, T., 1984, Purification and characterization of cMGF, a novel chicken myelomonocytic growth factor. EMBO J 3, 3191-3197. Leutz, A., Beug, H., Walter, C., Graf, T., 1988, Hematopoietic growth factor glycosylation. Multiple forms of chicken myelomonocytic growth factor. J Biol Chem 263, 3905-3911. Li, X., Chiang, H.I., Zhu, J., Dowd, S.E., Zhou, H., 2008, Characterization of a newly developed chicken 44K Agilent microarray. BMC Genomics 9, 60. Lillehoj, H.S., Kim, C.H., Keeler, C.L., Jr., Zhang, S., 2007, Immunogenomic approaches to study host immunity to enteric pathogens. Poult Sci 86, 1491-1500. Lindsey, J.W., 2007, Dexamethasone-induced Ras-related protein 1 is a potential regulatory protein in B lymphocytes. Int Immunol 19, 583-590. MacBeth, K.J., Lee, C.A., 1993, Prolonged inhibition of bacterial protein synthesis abolishes Salmonella invasion. Infect Immun 61, 1544-1546. Marshall, C.J., 1996, Ras effectors. Curr Opin Cell Biol 8, 197-204. Martin-Magniette, M.L., Aubert, J., Cabannes, E., Daudin, J.J., 2005, Evaluation of the gene-specific dye bias in cDNA microarray experiments. Bioinformatics 21, 1995-2000. Martins-Green, M., 2001, The chicken Chemotactic and Angiogenic Factor (cCAF), a CXC chemokine. Int J Biochem Cell Biol 33, 427-432. Mastroeni, P., Clare, S., Khan, S., Harrison, J.A., Hormaeche, C.E., Okamura, H., Kurimoto, M., Dougan, G., 1999, Interleukin 18 contributes to host resistance and gamma interferon production in mice infected with virulent Salmonella typhimurium. Infect Immun 67, 478-483. Mizumoto, N., Sasai, K., Tani, H., Baba, E., 2005, Specific adhesion and invasion of Salmonella Enteritidis in the vagina of laying hens. Vet Microbiol 111, 99-105. Mostecki, J., Showalter, B.M., Rothman, P.B., 2005, Early growth response-1 regulates lipopolysaccharide-induced suppressor of cytokine signaling-1 transcription. J Biol Chem 280, 2596-2605. Motakis, E.S., Nason, G.P., Fryzlewicz, P., Rutter, G.A., 2006, Variance stabilization and normalization for one-color microarray data using a data-driven multiscale approach. Bioinformatics 22, 2547-2553. Nerren, J.R., Swaggerty, C.L., Mackinnon, K.M., Genovese, K.J., He, H., Pevzner, I., Kogut, M.H., 2008, Differential mRNA expression of the avian-specific toll-like receptor 15 between heterophils from Salmonella-susceptible and -resistant chickens. Immunogenetics. Ojha, S., Kostrzynska, M., 2008, Examination of animal and zoonotic pathogens using microarrays. Vet Res 39, 4. Okamura, M., Kamijima, Y., Miyamoto, T., Tani, H., Sasai, K., Baba, E., 2001a, Differences among six Salmonella serovars in abilities to colonize reproductive organs and to contaminate eggs in laying hens. Avian Dis 45, 61-69. Okamura, M., Lillehoj, H.S., Raybourne, R.B., Babu, U.S., Heckert, R.A., Tani, H., Sasai, K., Baba, E., Lillehoj, E.P., 2005, Differential responses of macrophages to Salmonella enterica serovars Enteritidis and Typhimurium. Vet Immunol Immunopathol 107, 327-335. Okamura, M., Miyamoto, T., Kamijima, Y., Tani, H., Sasai, K., Baba, E., 2001b, Differences in abilities to colonize reproductive organs and to contaminate eggs in intravaginally inoculated hens and in vitro adherences to vaginal explants between Salmonella enteritidis and other Salmonella serovars. Avian Dis 45, 962-971. Patterson, T.A., Lobenhofer, E.K., Fulmer-Smentek, S.B., Collins, P.J., Chu, T.M., Bao, W., Fang, H., Kawasaki, E.S., Hager, J., Tikhonova, I.R., Walker, S.J., Zhang, L., Hurban, P., de Longueville, F., Fuscoe, J.C., Tong, W., Shi, L., Wolfinger, R.D., 2006, Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol 24, 1140-1150. Porter, T.E., Hargis, B.M., Silsby, J.L., el Halawani, M.E., 1989, Differential steroid production between theca interna and theca externa cells: a three-cell model for follicular steroidogenesis in avian species. Endocrinology 125, 109-116. Prud'homme, G.J., Kono, D.H., Theofilopoulos, A.N., 1995, Quantitative polymerase chain reaction analysis reveals marked overexpression of interleukin-1 beta, interleukin-1 and interferon-gamma mRNA in the lymph nodes of lupus-prone mice. Mol Immunol 32, 495-503. Quinn, P.J., Markey, B.K., Carter, M.E., Donnelly, W.J., Leonard, F.C., 2002, Veterinary Microbiology and Microbial Disease. Blackwell Science, Great Britain. Qureshi, M.A., Heggen, C.L., Hussain, I., 2000, Avian macrophage: effector functions in health and disease. Dev Comp Immunol 24, 103-119. Rabsch, W., Hargis, B.M., Tsolis, R.M., Kingsley, R.A., Hinz, K.H., Tschape, H., Baumler, A.J., 2000, Competitive exclusion of Salmonella enteritidis by Salmonella gallinarum in poultry. Emerg Infect Dis 6, 443-448. Rawlings, J.S., Rosler, K.M., Harrison, D.A., 2004, The JAK/STAT signaling pathway. J Cell Sci 117, 1281-1283. Rodenburg, W., Bovee-Oudenhoven, I.M., Kramer, E., van der Meer, R., Keijer, J., 2007, Gene expression response of the rat small intestine following oral Salmonella infection. Physiol Genomics 30, 123-133. Sadeyen, J.R., Trotereau, J., Velge, P., Marly, J., Beaumont, C., Barrow, P.A., Bumstead, N., Lalmanach, A.C., 2004, Salmonella carrier state in chicken: comparison of expression of immune response genes between susceptible and resistant animals. Microbes Infect 6, 1278-1286. Sakai, T., Chalermchaikit, T., 1996, The major sources of Salmonella enteritidis in Thailand. Int J Food Microbiol 31, 173-180. Saskia van Hemert, A.J.W.H., Mari A. Smits and Johanna M.J. Rebel, 2006a, Early host gene expression responses to a Salmonella infection in the intestine of chickens with different genetic background examined with cDNA and oligonucleotide microarrays. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics Volume 1, 292-299. Saskia van Hemert, A.J.W.H., Mari A. Smits and Johanna M.J. Rebel, 2006b, Gene expression responses to a Salmonella infection in the chicken intestine differ between lines. Vet Immunol Immunopathol 114, 247-258. Saskia van Hemert, A.J.W.H., Mari A. Smits and Johanna M.J. Rebel, 2007, Immunological and gene expression responses to a Salmonella infection in the chicken intestine. Vet Res 38, 51-63. Schroeder, A., Mueller, O., Stocker, S., Salowsky, R., Leiber, M., Gassmann, M., Lightfoot, S., Menzel, W., Granzow, M., Ragg, T., 2006, The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7, 3. Senden, N.H., Jeunhomme, T.M., Heemskerk, J.W., Wagenvoord, R., van't Veer, C., Hemker, H.C., Buurman, W.A., 1998, Factor Xa induces cytokine production and expression of adhesion molecules by human umbilical vein endothelial cells. J Immunol 161, 4318-4324. Shivaprasad, H.L., Timoney, J.F., Morales, S., Lucio, B., Baker, R.C., 1990, Pathogenesis of Salmonella enteritidis infection in laying chickens. I. Studies on egg transmission, clinical signs, fecal shedding, and serologic responses. Avian Dis 34, 548-557. Steele-Mortimer, O., 2008, The Salmonella-containing vacuole-Moving with the times. Curr Opin Microbiol 11, 38-45. Suzuki, K., Watanabe, T., Sakurai, S., Ohtake, K., Kinoshita, T., Araki, A., Fujita, T., Takei, H., Takeda, Y., Sato, Y., Yamashita, T., Araki, Y., Sendo, F., 1999, A novel glycosylphosphatidyl inositol-anchored protein on human leukocytes: a possible role for regulation of neutrophil adherence and migration. J Immunol 162, 4277-4284. Swaggerty, C.L., He, H., Genovese, K.J., Kaiser, P., Pevzner, I.Y., Kogut, M.H., 2006a, The feathering gene is linked to degranulation and oxidative burst not cytokine/chemokine mRNA expression levels or Salmonella enteritidis organ invasion in broilers. Avian Pathol 35, 465-470. Swaggerty, C.L., Kaiser, P., Rothwell, L., Pevzner, I.Y., Kogut, M.H., 2006b, Heterophil cytokine mRNA profiles from genetically distinct lines of chickens with differential heterophil-mediated innate immune responses. Avian Pathol 35, 102-108. Takata, T., Liang, J., Nakano, H., Yoshimura, Y., 2003, Invasion of Salmonella enteritidis in the tissues of reproductive organs in laying Japanese quail: an immunocytochemical study. Poult Sci 82, 1170-1173. Thiagarajan, D., Saeed, A.M., Asem, E.K., 1994, Mechanism of transovarian transmission of Salmonella enteritidis in laying hens. Poult Sci 73, 89-98. Thiagarajan, D., Saeed, M., Turek, J., Asem, E., 1996, In vitro attachment and invasion of chicken ovarian granulosa cells by Salmonella enteritidis phage type 8. Infect Immun 64, 5015-5021. Van Immerseel, F., De Buck, J., De Smet, I., Mast, J., Haesebrouck, F., Ducatelle, R., 2002, Dynamics of immune cell infiltration in the caecal lamina propria of chickens after neonatal infection with a Salmonella enteritidis strain. Dev Comp Immunol 26, 355-364. VanGuilder, H.D., Vrana, K.E., Freeman, W.M., 2008, Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44, 619-626. Voetsch, A.C., Van Gilder, T.J., Angulo, F.J., Farley, M.M., Shallow, S., Marcus, R., Cieslak, P.R., Deneen, V.C., Tauxe, R.V., 2004, FoodNet estimate of the burden of illness caused by nontyphoidal Salmonella infections in the United States. Clin Infect Dis 38 Suppl 3, S127-134. Wang, C.-H., Chiou, J.-H., Tsai, H.-J., Shieh, H.K., Shien, J.-H., Chen, C.-L., Lien, Y.-Y., 2005, Serological Prevalence of S. Enterica Serovars Enteritidis and Pullorum in Different Types of Chickens in Taiwan During 2005. Taiwan Vetenary Journal 33, 14-19. Wang, Y., Li, J., Ying Wang, C., Yan Kwok, A.H., Leung, F.C., 2007, Epidermal growth factor (EGF) receptor ligands in the chicken ovary: I. Evidence for heparin-binding EGF-like growth factor (HB-EGF) as a potential oocyte-derived signal to control granulosa cell proliferation and HB-EGF and kit ligand expression. Endocrinology 148, 3426-3440. Whittow, G.C., 2000, Sturkie's Avian Physiology, 15th Edition. ACADEMIC PRESS. Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K., Akira, S., 2003, Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640-643. Yilmaz, A., Shen, S., Adelson, D.L., Xavier, S., Zhu, J.J., 2005, Identification and sequence analysis of chicken Toll-like receptors. Immunogenetics 56, 743-753. York, J.J., Strom, A.D., Connick, T.E., McWaters, P.G., Boyle, D.B., Lowenthal, J.W., 1996, In vivo effects of chicken myelomonocytic growth factor: delivery via a viral vector. J Immunol 156, 2991-2997. Yoshimura, Y., Ohashi, H., Subedi, K., Nishibori, M., Isobe, N., 2006, Effects of age, egg-laying activity, and Salmonella-inoculation on the expressions of gallinacin mRNA in the vagina of the hen oviduct. J Reprod Dev 52, 211-218. Young, K.G., Kothary, R., 2005, Spectrin repeat proteins in the nucleus. Bioessays 27, 144-152. Zhao, S.H., Kuhar, D., Lunney, J.K., Dawson, H., Guidry, C., Uthe, J.J., Bearson, S.M., Recknor, J., Nettleton, D., Tuggle, C.K., 2006, Gene expression profiling in Salmonella Choleraesuis-infected porcine lung using a long oligonucleotide microarray. Mamm Genome 17, 777-789. Zhou, H., Lamont, S.J., 2007, Global gene expression profile after Salmonella enterica Serovar enteritidis challenge in two F8 advanced intercross chicken lines. Cytogenet Genome Res 117, 131-138. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43320 | - |
| dc.description.abstract | 食用被腸炎沙門氏桿菌(Salmonella Enteritidis)污染的蛋品已經被認為是人類感染食物媒介沙門氏桿菌症主要原因之一,每年於世界各地引起許多的病例爆發,造成嚴重的經濟損失。而雞顆粒細胞(chicken granulosa cell, CGC)是排卵前濾泡中最靠近卵黃的組織層,為腸炎沙門氏桿菌入侵及增殖偏好的位置。因此本研究利用雞全基因微陣列晶片分析體外培養的雞顆粒細胞感染腸炎沙門氏桿菌後在不同時序的基因表現變化,以了解雞顆粒細胞對於感染的反應。雞顆粒細胞感染腸炎沙門氏桿菌後與未感染腸炎沙門氏桿菌的基因表現比較,共有214個基因表現量顯著地改變(p<0.01)。根據基因於感染後4小時及48小時的表現量變化,分成 1a、1b、1c、2a及2b五個子族群,分別包含70個基因(32.71%)、27個基因(12.62%)、66個基因(30.84%)、41個基因(19.16%)及10個基因(4.67%)。這些改變的基因參與免疫反應、生理調控及訊息傳遞的功能,以及部分目前未知其功能。另外,參與調控細胞激素與生長因子的 JAK-STAT pathway亦被高度活化,其中IL-6、cytokineR、STAT、PI3K四個部分有明顯變化,均屬於JAK-STAT pathway前半部。於微陣列晶片檢測結果表現量上升的基因中,與免疫反應調控相關的TLR15、IL-6、CXCLi1、CXCLi2及K203,其mRNA於兩個時間點均表現量上升,以即時定量反轉錄聚合酶連鎖反應檢測亦得到上升的結果。而與生理反應調控相關的RASD1及HB-EGF以即時定量反轉錄聚合酶連鎖反應與微陣列晶片檢測其表現量均下降。根據本實驗結果得知:雞顆粒細胞感染腸炎沙門氏桿菌後,短時間內即能夠吸引先天性免疫反應的細胞,然而長時間其免疫反應會被抑制。而且雞顆粒細胞細胞生長受到抑制,進而影響濾泡發育及排卵。其中化學激素(chemokine)及旁分泌(paracrine)扮演相當重要的角色。 | zh_TW |
| dc.description.abstract | Consumption of Salmonella Enteritidis (SE)-contaminated eggs has been recognized as one of the important reasons of human food-borne salmonellosis. Chicken granulosa cells (CGC), last tissue layer surrounding the yolk in prevulatory follicles has been demonstrated a preferred site for the Salmonella Enteritidis invasion. To understand how the chicken granulosa cell responds to the infection, a time-course in-vitro study was conducted to identify transcription changes of chicken granulosa cell using chicken whole genome microarrays. The expression of 214 genes of chicken granulosa cell had altered (p<0.01) when compared to those of uninfected cells after the infection. According to the different responses of the altered gene between 4hpi and 48hpi, they are divided into cluster 1a, 1b, 1c, 2a, and 2b those include 70 genes (32.71%), 27 genes (12.62%), 66 genes (30.84%), 41 genes (19.16%), and 10 genes (4.67%) respectively. Among of them, many were related to immune response, physiological process, signal transduction activity, transcription and some of unknown function. We also noted that the JAK-STAT pathway which is essential in regulation of cellular cytokines and growth factors being highly active those are IL-6, cytokineR, STAT,and PI3K in the upstream of this pathway. Among the up-regulated genes, the mRNA levels of TLR15, IL-6, CXCLi1, CXCLi2 and K203 at the two time points from the infected cells were also increased by the validation of real-time RT-PCR (RRT-PCR). However the mRNA expression of RASD1 and HB-EGF decreased according to the microarray and RRT-PCR analyses. These results suggest that during the Salmonella Enteritidis infection, chicken granulosa cell are capable of recruiting cells of innate immune responses in short term. In long term, the growth of chicken granulosa cell is suppressed and then the development and ovulation of follicles is also suppressed. Among of them, the chemokine and paracrine play the important role. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:49:23Z (GMT). No. of bitstreams: 1 ntu-98-R96629038-1.pdf: 38572952 bytes, checksum: f69312ff2e3f336ba45fc6fe13df65be (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要……………………………………………………………….I
英文摘要………………………………………………………………III 目錄…………………………………………………………………….V 表次………………………………………………………………......VIII 圖次…………………………………………………………………....IX 第一章 緒言………………………………………………..………….1 第二章 文獻探討………………………………………..…………….3 第一節 沙門氏桿菌及沙門氏菌症……………........………...…..3 第二節 蛋品中沙門氏桿菌污染之流行病學………..…..…...…..6 第三節 雞顆粒細胞………………………………...........…....…..8 第四節 雞細胞與沙門氏桿菌……………………........……....…10 第五節 微陣列晶片………………………. …….….........…...….18 第六節 即時定量反轉錄聚合酶鏈式反應.......…………….....…21 第三章 材料與方法…………………………………………..……....24 第一節 試劑製備……………………..........…………….….....…24 第二節 實驗雞隻……………………..........……………..…..…..25 第三節 腸炎沙門氏桿菌製備…………..........………….….……27 第四節 雞顆粒細胞製備………………….........………..….……29 第五節 腸炎沙門氏桿菌攻擊雞顆粒細胞……….……..….……30 第六節 萃取mRNA………………………………..........…..…....31 第七節 微陣列晶片及分析……………….………...........….…...32 第八節 即時定量反轉錄聚合酶鏈式反應....................................34 第四章 實驗結果………………………………….…………..….......36 第一節 mRNA品質評估…………………….…………....…...36 第二節 染劑轉換………………………………………..…..…37 第三節 雞顆粒細胞感染腸炎沙門氏桿菌後之基因表現....…38 第四節 調控路徑...............………………………………….…41 第五節 微陣列晶片與定量反轉錄聚合酶鏈式反應…............42 第五章 討論……………………………………………….….…....…44 第一節 染劑轉換(Dye swap)對微陣列晶片效能的影響....44 第二節 雞顆粒細胞之基因表現…………………….…...........46 第三節 調控路徑…………………………………….…….......50 第四節 定量反轉錄聚合酶連鎖反應與微陣列晶片效能........51 第五節 免疫相關基因表現………………………….…….......52 第六節 生理調控…………………………………….…….......60 第六章 結論………………………………………………….….........62 第七章 參考文獻……………………………………...……….......…65 表格、圖片…………………………………………...…….……........79 表 次 Table 1 The sequence of primers using in the RRT-PCR………....…79 Table 2 Mean of genes expression change-fold from M1 and M2 is more than 2-fold up-regulated at 4 hpi….…………...........80 Table 3 Mean of genes expression change-fold from M1 and M2 is more than 2-fold down-regulated at 4 hpi……...................87 Table 4 Mean of genes expression change-fold from M1 and M2 is more than 2-fold up-regulated at 48 hpi….....….................88 Table 5 Mean of genes expression change-fold from M1 and M2 is more than 2-fold down-regulated at 48 hpi…….................90 Table 6 The results of the genes expression change-fold analyzed by microarray and RRT-PCR…………….……..........................95 圖 次 Figure 1 Prehierarchal and hierarchal follicles of the laying hen…….....96 Figure 2 The follicles tissue layers surrounding the oocyte……….........97 Figure 3 The chicken granulosa cell attaches on petri dish after 24h cuture..........................................................................................98 Figure 4 The results of the RNA analyzed by Bioanalyzer 2100.............99 Figure 5 The correlation scatter diagram between M1 and M2. 5A The correlation coefficient and regression line between 4 hpi-m1 & 4 hpi-m2..........................................................101 5B The correlation coefficient and regression line between 4 hpi-m1 & 4 hpi-m2..........................................................102 Figure 6 The clusters of mRNA expression…………….…….….........103 Figure 7 The genes involved JAK-STAT pathway are altered at 4 hpi and 48 hpi…………..…...…..…………………............................104 Figure 8 The relative expression levels of genes at 4 hpi and 48 hpi analyzed by microarray and RRT-PCR...........…....……........105 | |
| dc.language.iso | zh-TW | |
| dc.subject | 基因表現 | zh_TW |
| dc.subject | 微陣列晶片 | zh_TW |
| dc.subject | 雞顆粒細胞 | zh_TW |
| dc.subject | 即時定量反轉錄聚合酶 | zh_TW |
| dc.subject | 連鎖反應 | zh_TW |
| dc.subject | gene expression | en |
| dc.subject | microarray | en |
| dc.subject | chicken granulosa cell | en |
| dc.subject | RRTPCR | en |
| dc.title | 腸炎沙門氏桿菌感染雞顆粒細胞誘發之基因時序表現研究 | zh_TW |
| dc.title | A Time-Course Study of Gene Responses in Chicken Granulosa Cells Infected by Salmonella Enteritidis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡向榮,邱智賢,張紹光,連一洋 | |
| dc.subject.keyword | 微陣列晶片,雞顆粒細胞,即時定量反轉錄聚合酶,連鎖反應,基因表現, | zh_TW |
| dc.subject.keyword | microarray,chicken granulosa cell,RRTPCR,gene expression, | en |
| dc.relation.page | 105 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-06 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 37.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
