Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43298
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳延平
dc.contributor.authorSsu-Hao Huangen
dc.contributor.author黃司豪zh_TW
dc.date.accessioned2021-06-15T01:47:59Z-
dc.date.available2012-07-16
dc.date.copyright2009-07-16
dc.date.issued2009
dc.date.submitted2009-07-06
dc.identifier.citationBjørn W. J., Breiby D.W., West K., Base inhibited oxidative polymerization of 3,4-ethylenedioxythiophene with iron(III)tosylate, Synth. Met., 152, 1–4 (2005).

Cao Y., Andreatta A., Heeger A. J., Smith P., Influence of chemical polymerization conditions on the properties of polyaniline, Polymer., 30, 2305-2311 (1989).

Chen S. A., Tsai C. C., Structure/properties of conjugated conductive polymers.
2.3-Ether-substituted polythiophenes and poly(4-methylthiophenes),
Macromolecules, 26, 2234–2239(1993).
Chen J. H., Dai C. A., Chiou W. Y., Synthesis of highly conductive EDOT copolymer films via oxidative chemical in situ polymerization, J. Polym. Sci. Part A: Polym. Chem., 46, 1662 – 1673 (2007)
Combes J. R., Guan Z., DeSimone J. M., Homogeneous free-radical polymerization in carbon dioxide.3. telomerization of 1,1-difluoroethylene in supercritical carbon dioxide, Macromolecules, 27, 865-867 (1994).

Fabretto M., Zuber K., Hall C., Murphy P., High conductivity PEDOT using humidity facilitated vacuum vapour phase polymerization, macromol. Rapid Commum. 29, 1403-1409 (2008).

Guo Z., Kim T. Y., Kenny L., Pereira T., Sugar J. G., H. Hahn T., Strengthening and thermal stabilization of polyurethane nanocomposites with silicon carbide nanoparticles by a surface-initiated-polymerization approach, Compos. Sci. Technol., 68, 164-170 (2008).
Hagiwara M., Mitusi H., Machi S., Kagiya T., Liquid carbon dioxide as solvent for the radiation polymerization of ethylene, J. Polym. Sci.: Part A-1, 6, 603-608 (1968).
Han M. G., Armes S. P., Synthesis of poly(3,4-ethylenedioxythiophene)/silica colloidal nanocomposites, Langmuir, 19, 4523-4526 (2003).

Han M. G., Foulger S. H., Crystalline Colloidal arrays composed of poly(3,4-ethylenedioxythiophene)-coated polystyrene particles with a stop band in the visible regime, Adv. Mater., 16, 231-234 (2004a)
Han M. G., Foulger S. H., Preparation of poly(3,4-ethylenedioxythiophene) (PEDOT) coated silica core-shell particles and PEDOT hollow particles, Chem. Commun., 16 , 2154-2155 (2004b).

Havinga E. E., Horssen L. W., Hoeve W. T., Wynberg H., Meijer E. W., Self-doped water-soluble conducting polymers, Polym. Bull., 18, 277-281 (1987)
Hong R. Y., Qian J.Z., Cao J. X. Synthesis and characterization of PMMA grafted ZnO nanoparticles, Powder Technol., 163, 160-168 (2006)
Huh P. H., Kim S. C., Kim Y. H., Kumar J., Kim B. S., Jo N. J., Lee J. O., Recovery and characterization of pure poly(3,4-ethylenedioxythiophene) via biomimetic template polymerization, Polym. Eng. Sci., 47, 71-75 (2007).
Jen K.Y., Miller G. G., Elsenbaumer R. L., Highly conducting, soluble, and environmentally-stable poly(3-alkylthiophenes), J. Chem. Soc., Chem. Commun., 10, 1346 - 1347 (1986).
Iijima M., Tsukada M., Kamiya H., Effect of particle size on surface modification of silica nanoparticles by using silane coupling agents and their dispersion stability in methylethylketone, J. Colloid Interface Sci., 307, 418-424 (2007).
Jianyong O., Xu Q., Chu C.W., Yang Y., Li G., Shinar J., On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment, Polymer, 45, 8443-845 (2004).
Jung, J., Perrut, M., Particle design using supercritical fluids: Literature and patent survey, J. Supercrit. Fluids, 20, 179-219 (2001).
Kelly T. L., Che P. Y. S., Yamada Y., Yano K., Wolf M. O., Influence of surface morphology on the colloidal and electronic behavior of conjugated polymer-silica microspheres, Langmuir, 24, 9809-9815 (2008a).

Kelly T. L., Yamada Y., Che P. Y. S., Yano K., Wolf M. O., Monodisperse poly(3,4-ethylenedioxythiophene)–silica microspheres: synthesis and assembly into crystalline colloidal arrays, Adv. Mater., 20, 2616–2621 (2008b).
Koegler, W. S., Patrick, C., Cima, M. J., Griffith, L. G., Carbon dioxide extraction of residual chloroform from biodegradable polymers, J. Biomed. Mater. Res., 63, 567-576 (2002).
Lepilleur C., Beckman E. J., Dispersion polymerization of methyl methacrylate in supercritical co2, macromolecules, 30, 745-756 (1997).
Lock J. P., Im S. G., Gleason K. K., Oxidative chemical vapor deposition of electrically conducting poly(3,4-ethylenedioxythiophene) films, macromolecules, 39, 5326-5329 (2006).
Lee, L. J., Zeng, C., Cao, X., Han, X., Shen, J., Xu, G., Polymer nanocomposite foams, Compos. Sci. Technol., 65, 2344-2363 (2005).
Malinauskas A., Holze R., UV-VIS spectroelectrochemical detection of intermediate species in the electropolymerization of an aniline derivative, Electrochim. Acta, 43, 2413-2422 (1998)
Malinauskas A., Holze R., An in situ UV—vis spectroelectrochemical investigation of the initial stages in the electrooxidation of selected ring- and nitrogen-alkylsubstituted anilines, Electrochim. Acta, 44 2613-2623 (1999).
Ma L., Li Y. X., Yu X. F., Yang Q. B., Noh C. H., Using room temperature ionic liquid to fabricate PEDOT/TiO2 nanocomposite electrode-based electrochromic devices with enhanced long-term stability, Sol. Energy Mater. Sol. Cells, 92, 1253-1259 (2008).
Mousavi Z., Ekhoim A., Bobacka J., Ivaska A., Ion-selective organic electrochemical junction transistors based on poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate), Electronanalysis, 21, 472-479 (2009).
Mumtaz M., Cuendias A., Putaux J.L., Cloutet E., Cramail H., Synthesis of PEDOT nanoparticles and vesicles by dispersion polymerization in alcoholic media,
macromol. Rapid Commun., 27, 1446–1453 (2006).
Mullee, W. H., De Leeuwe, M., Roberson Jr., G. A., Removal of CMP residue from semiconductors using supercritical carbon dioxide process, Patent 6,277,753 (2001).
Norton J., Han M. G., Jiang P., Creagera S., Foulger S. H., Electrochemical tuning the optical properties of crystalline colloidal arrays composed of poly(3,4- ethyleneediox- -ythiophene) coated silica particles, J. Mater. Chem., 17, 1149–1153 (2007).

Reverchon, E., Adami, R., Nanomaterials and supercritical fluids, J. Supercrit. Fluids,
37, 1-22 (2006).

Rughooputh S. D. D. V., Hotta S., Heeger A. J., Wudl F., Chromism of soluble polythienylenes, J. Polym. Sci., Polym.Phy., 25, 1071-1078 (1987).

Sertage W. G., Jr.Davis P., Schenck H. U., Denzinger W., Hartmann H., Canadian
Patent, 1, 274,942 (1986)

Shirakawa H., Louis E. J., MacDiarmid A. G., Chiang C. K., Heeger A. J., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, Chem. Commun., 16, 578 – 580 (1977).
Srinivasan G., Elliott J. R., Microcellular materials via polymerization in supercritical fluid, industrial & engineering chemistry research, 31, 1414-1417 (1992).

Stejskal J., Kratochvil P., Jankins A. D., The formation of polyaniline and the nature of its structures, Polymer, 37, 367-369 (1996).
Sumitomo, French Patent, 1, 524,533 (1968).
Tang M., Du T. B., Chen Y. P., Sorption and diffusion of supercritical carbon dioxide in polycarbonate, J. Supercrit. Fluids, 28, 207–218 (2004).
Tsukahara, Y., Yamauchi, T., Kawamoto, T., Wada, Y., Functionalization of multi- walled carbon nanotubes realized by microwave- driven chemistry inducing dispersibility in liquid madia, Bull. Chem. Soc. Jpn., 81, 387-392 (2008).
Tzou K., Regory R. V., Kinetic study of the chemical polymerization of aniline in aqueous solutions, Synth. Met., 47, 267-277 (1992).
Wang, Z. W., Wang, T. J., Wang, Z. W., Y., Organic modification of nano-SiO2 particles in supercritical CO2, J. Supercrict. Fluids, 37, 125-130 (2006).
Yuvaraj H., Woo M. H., Park E. J., Gal Y. S., Lim K. T., Synthesis and characterization of polypyrrole–TiO2 nanocomposites in supercritical CO2, Colloids and Surfaces A: Physicochem. Eng. Aspects, 313–314, 300–303 (2008a).
Yuvaraj H., Woo M.H., Park E.J., Gal Y.S., Lim K.T., A facile synthesis of poly(3-octylthiophene)-titanium dioxide nanocomposite particles in supercritical CO2, J. Nanosci. Nanotechnol., 8, 4743-4746 (2008b).
陳淑鈺 利用超臨界二氧化碳進行奈米二氧化矽表面接枝之研究,國立台灣大學化學工程研究所碩士論文,(2008)
陳政豪 導電高分子製作可撓曲式電致變色元件之研究,國立成功大學化學工程所碩士論文,(2005)

張淑美,科學月刊 2001,第三十二卷第二期,108.
鍾明華 導電高分子/金屬氧化物水可溶性複合物之合成與電化學性質的探討,國
立中央大學化學研究所,(2002)
董才士 以PEDOT導電高分子及其衍生物與普魯士藍搭配之電致色變元件性質最
適化與長期穩定性硏究,國立台灣大學化學工程研究所碩士論文,(2004)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43298-
dc.description.abstract本研究以超臨界二氧化碳為媒介進行導電性核殼(Core-Shell)材料的製備,並且探討以不同的苯磺酸和操作條件在超臨界二氧化碳環境中對於材料導電度的影響。
聚乙烯二氧基噻吩(poly(3,4-ethylenedioxythiophene),PEDOT)具有高導電率、高透光性以及良好的環境穩定性等特點,目前被廣泛的應用於發光二極體、太陽能電池、超級電容器、電致發光層及選擇性穿透膜等的理想材料。二氧化矽的加入已被證明可以增加材料的耐熱性及機械性能,本研究即進行有機(PEDOT)/無機(SiO2)奈米混成實驗。
本研究探討PEDOT在奈米級二氧化矽表面上進行包覆聚合反應實驗。技術方面可以藉由超臨界二氧化碳技術避免掉化學溶劑的使用,以及透過調整反應時間、壓力即可控制包覆量,並取得最佳的參數條件,反應後的產品進行FTIR及TGA的鑑定PEDOT包覆於Silica表面上的情形,透過UV-vis及四點探測儀分析產物的電學性質,最後透過TEM來觀察不同反應條件下,對於產物結構的影響。結果顯示在溫度為40℃,壓力在280bar,反應時間48小時,質子酸(Decylbenzene sulfonic acid, DBSA)摻合度(DBSA/EDOT)莫耳比為0.2的操作條件下,可以得到最大包覆量為62.69 wt.%,在此條件下的導電度也是最好的,可以達到6.7×10-2 S/cm。利用TEM的觀察中,可以發現材料出現了核殼型(Core-Shell)結構,證明在超臨界二氧化碳環境下能夠進行有機(PEDOT)/無機(SiO2)複合材料的製備。
zh_TW
dc.description.abstractThe conducting core-shell materials are formed using supercritical carbon dioxide as the solvent in this study. The effect of various sulfonic acids and operating conditions on the conductivity of the doping process are discussed.
Poly(3,4-ethylenedioxythiophene) (PEDOT) has high conductivity, relatively high transparency and long-term stability. The materials are widely applied in light-emitting diode, solar cell, super capacitor and ion-selective organic transistor. The properties of nanocomposites can be altered by coating the particles with an outer shell that influences the final electrical, thermal and mechanical properties. The synthesis of organic (PEDOT) and inorganic (SiO2) nanocomposites are investigated in this study by applying the supercritical fluid technology.
Unlike the conventional process with organic solvent, supercritical carbon dioxide was used as the solvent in this study to coat PEDOT onto the surface of nanosilica particles. The coating process was operated at different pressures, dopant concentrations and doping times. The optimal reaction condition are at 40℃, 280bar, reaction time of 48 hours and the molar ratio of 0.2 (DBSA/EDOT). The product is characterized by FTIR and TGA. The maximum coating percentage is 62.69 wt.% under the optimal operation condition. The electrical property was analyzed by UV-vis and Four-Point Probe. The maximum conductivity is 6.7×10-2 S/cm. Core-Shell structure of the product was confirmed through the TEM image.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:47:59Z (GMT). No. of bitstreams: 1
ntu-98-R96549028-1.pdf: 3450325 bytes, checksum: a403f215b87820e33f0f565ec12045a1 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目 錄
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖目錄 Ⅴ
表目錄 IX
第一章 緒論 1
1-1 有機/無機複合材料 1
1-2 有機/無機複合材料製備方法 2
1-3 有機導電高分子 3
1-3.1 導電高分子導電機制 4
1-3.2 導電高分子摻雜原理 5
1-3.3 導電高分子摻雜程序種類 6
1-3.4 偏極子、雙偏極子和孤立子 6
1-3.5 導電高分子合成方法 7
1-4導電高分子PEDOT 9
1-4.1 PEDOT的應用 9
1-4.2 PEDOT合成機制 10
1-4.3 PEDOT摻雜程序 10
1-4.4 PEDOT電學性質 10
1-5 PEDOT/SiO2 複合材料製備方法 12
1-6 超臨界流體 13
1-6.1 超臨界二氧化碳的應用 14
1-6.2超臨界流體於高分子聚合上的應用 15
1-7本研究之目的 16
第二章 實驗方法與步驟 17
2-1 實驗藥品與分析儀器 17
2-1.1 實驗藥品 17
2-1.2 實驗儀器 18
2-1.3實驗分析儀器 19
2-2實驗裝置 21
2-3實驗步驟 22
2-3.1超臨界二氧化碳包覆實驗 22
2-3.2 質子酸摻雜實驗 23
2-4 分析方法 23
2-4.1 結構及定量分析 23
2-4.2 外觀形狀及電學性質分析 24
第三章 結果與討論 26
3-1 二氧化矽的選用 26
3-1.1 紅外線光譜儀分析 26
3-1.2 熱重分析儀分析 27
3-2質子酸混摻對導電共軛高分子(PEDOT)的影響 28
3-3利用超臨界二氧化碳進行PEDOT包覆Silica之特性分析討論 29
3-3.1利用超臨界二氧化碳進行PEDOT包覆Silica之結構討論 29
3-3.2熱重分析儀分析 29
3-3.3 原料紅外線光譜分析 31
3-3.4 操作壓力效應 31
3-3.5 質子酸(p-TSA)混摻效應 33
3-3.6 質子酸(DBSA)混摻效應 35
3-3.7 反應時間效應 36
第四章 結論 39
參考文獻 81
dc.language.isozh-TW
dc.subject奈米複合材料zh_TW
dc.subject超臨界二氧化碳zh_TW
dc.subject核殼結構zh_TW
dc.subject聚乙烯二氧基噻zh_TW
dc.subject吩zh_TW
dc.subjectSupercritical carbon dioxideen
dc.subjectNanocmpositesen
dc.subjectCore-Shell stuctureen
dc.title利用超臨界二氧化碳製備核殼型導電性材料zh_TW
dc.titleSynthesis of Core-Shell Conductivity Materials Using Supercritical Carbon Dioxideen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱文英,陳文章
dc.subject.keyword超臨界二氧化碳,奈米複合材料,聚乙烯二氧基噻,吩,核殼結構,zh_TW
dc.subject.keywordSupercritical carbon dioxide,Nanocmposites,Core-Shell stucture,en
dc.relation.page87
dc.rights.note有償授權
dc.date.accepted2009-07-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved