Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43281
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭士康(Shyh-Kang Jeng)
dc.contributor.authorChun-Chia Yuen
dc.contributor.author喻俊嘉zh_TW
dc.date.accessioned2021-06-15T01:46:58Z-
dc.date.available2009-08-18
dc.date.copyright2009-08-18
dc.date.issued2009
dc.date.submitted2009-07-07
dc.identifier.citation[1] M. Alonso, B. David, and G. Richard, “Tempo and Beat Estimation of Musical signals,” in Proc. International Conference on Music Information Retrieval. Barcelona: Audiovisual Institute, Pompeu Fabra University, 2004, pp. 158–163.
[2] J. Foote, M. Cooper, and A. Girgensohn, “Creating Music Videos using Automatic Media Analysis,” in Proceedings of the tenth ACM international conference on Multimedia. 2002, ACM Press: Juan-les-Pins, France.
[3] X.-S. Hua, L. Lu, and H.-J. Zhang, “Automatic Music Video Generation Based on Temporal Pattern Analysis,” MM’04, October 10–16, 2004, New York, NY, USA.
[4] X.-S. Hua, L. Lu, and H.-J. Zhang, “Automatically Converting Photographic Series into Video,” MM’04, October 10–16, 2004, New York, NY, USA.
[5] C.-T. Li, M.-K. Shan, “Emotion-based Impressionism Slideshow with automatic Music Accompaniment,” MM’07, September 23–28, 2007, Augsburg, Bavaria, Germany.
[6] H.-W. Chen, et. al, “Action Movies Segmentation and Summarization Based on Tempo Analysis,” MIR’04, October 15–16, 2004, New York, USA.
[7] M. Sonka. V. Hlavac. R. Boyle, Image Processing, Analysis, and Machine Vision , CL-Engineering; 2 edition, 1998.
[8] B. Doval and X. Rodet, ”Estimation of fundamental frequency of musical sound signals,” in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Toronto, pp. 3657-3660, vol. 5, April 14-17, 1991.
[9] J. T. Foote and M. L. Cooper, “Media Segmentation using Self-Similarity Decomposition ,” in Proc. SPIE Storage and Retrieval for Media Databases, vol. 5021, 2003, pp. 167–175.
[10] http://en.wikipedia.org/wiki/Gammatone
[11] I. W. Tsang, J. T. Kwok, P.M. Cheung, “Very Large SVM Training using Core Vector Machines.” in Proc. 10th Int. Workshop Artif. Intell. Stat.
[12] T. Hida, “White Noise Analysis: Part I. Theory in Progress,” Taiwanese Journal of Mathematics, Vol. 7, No. 4, pp. 541-556, December 2003.
[13] J. Gilvarry, “Calculation of Motion Using Motion Vectors Extracted from an MPEG Stream,” Technical Report, Dublin City University, 1999.
[14] http://en.wikipedia.org/wiki/YIQ
[15] G. Jang, S. Woo, and C.-D. Yoo, “Voice segmentation algorithm,” in Proceedings of ICSP 2001, Aug. 22-24, 2001, Daejon, Korea.
[16] http://www.sonycreativesoftware.com/cinescore
[17] http://music-for-video.com/production-music.html
[18] S.M. Boker, M. Xu, J.L. Rotondo and K. King, “Windowed Cross–Correlation and Peak Picking for the Analysis of Variability in the Association Between Behavioral
Time Series,” Psychological Methods, 7:1, 338-355, 2002.
[19]http://seniord.ee.iastate.edu/SSOL/RADAR/prjpln99/detector3.html
[20] http://en.wikipedia.org/wiki/Autocorrelation
[21] http://pages.cpsc.ucalgary.ca/~hill/papers/synthesizer/body.html
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43281-
dc.description.abstract本篇論文提出一個AVMG系統,由兩個子系統所組成。第一個部分是影片裡面物體移動的分析,另一個部分就是配樂的分析。在影片分析部分,我們首先依據移動向量(motion vector)偵測物體的移動,之後再設定一個臨界值去區分出物體的位移或是場景的轉變,分離出物體移動與場景轉變後我們針對連續轉變的場景,取出物體移動部分做分析與分類。在這邊我們根據所偵測到的峰值數與臨界值的大小,區分出四類的物體轉變。配樂分析部分,我們根據音樂相關係數的大小與相關延遲時間的長短,把音樂分類成四類。然後再結合這兩類的系統做出影片自動配樂的結果。在實驗部分我們分別做出兩部影片與音樂的結合,第一部影片是針對車子的不同速度快慢位移與音樂的配合,第二部分採用電玩遊戲的影片做音樂的搭配,所呈現的效果相當協調。zh_TW
dc.description.abstractIn this study, a system called an automatic video music generation (AVMG) is presented. The AVMG is composed of two subsystems, namely, video motion discovery and music accompaniment. In video motion discovery part, we detect the moving objects based on motion vector and then separate motion change and scene change by setting threshold value. After the separation, we classify the motion types into four clusters. In music accompaniment part, we use music power spectrum density and similarity matrix to classify music types into four different types. Finally, we make composition of the two parts. Two experiments are employed to examine the proposed mechanism. The simulation results show that each segment of video can coordinate with music properly by AVMG.
 
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:46:58Z (GMT). No. of bitstreams: 1
ntu-98-R96944005-1.pdf: 1796890 bytes, checksum: e148c47038a97736fdcfee067ba63047 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsAbstract iii
中文摘要 iv
Chapter1 Introduction 1
1.1 Previous works 1
1.2 Motivation 3
1.3 The Proposed Idea 3
1.4 Organization of the Thesis 4
Chapter2 Analysis of Video Structure 5
2.1 White Gaussian Noise and Noise Suppression Analysis 6
2.2 Dynamic Segmentation and Color Models 8
2.3 Distinguishment of Motion Change and Scene Change 12
2.4 Non-maximal Suppression [7] of Peak Pitching 15
Chapter3 Music Segmentation & Feature Analysis 17
3.1 STFT and Similarity Matrix 19
3.2 Kernel Correlation 23
3.3 Filterbank Decomposition 25
3.4 Finding of Filterbank Envelope 26
3.5 Using Autocorrelation for Peak Finding 29
Chapter4 Automatic Generation of Video Music 31
4.1 Video Classification 32
4.2 Music Classification 36
4.3 Automatic Video Music Generation (AVMG) 39
Chapter5 Simulation and Experiments 41
5.1 Experiment 1 41
5.2 Experiment 2 46
Chapter6 Conclusions 51
References 52
dc.language.isoen
dc.subject影片畫面變化zh_TW
dc.subject自動配樂zh_TW
dc.subjectMotion and Scene Changeen
dc.subjectVideo Musicen
dc.title基於影片畫面變化的自動配樂zh_TW
dc.titleAutomatic Video Music Generation According to Motion and Scene Change in Videoen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee傅立成(Li-Chen Fu),周承復(Cheng-Fu Chou)
dc.subject.keyword自動配樂,影片畫面變化,zh_TW
dc.subject.keywordVideo Music,Motion and Scene Change,en
dc.relation.page54
dc.rights.note有償授權
dc.date.accepted2009-07-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved