Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43251
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾雪峰
dc.contributor.authorCheng-Hao Tsaien
dc.contributor.author蔡政豪zh_TW
dc.date.accessioned2021-06-15T01:45:10Z-
dc.date.available2009-07-22
dc.date.copyright2009-07-22
dc.date.issued2009
dc.date.submitted2009-07-09
dc.identifier.citation[1] R. G. Newton, 'OPTICAL THEOREM AND BEYOND,' American Journal of Physics, vol. 44, pp. 639-642, 1976.
[2] G. Mie, 'Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,' Annalen Der Physik, vol. 25, pp. 377-445, 1908.
[3] D. Colton and B. D. Sleeman, 'UNIQUENESS THEOREMS FOR THE INVERSE PROBLEM OF ACOUSTIC SCATTERING,' Ima Journal of Applied Mathematics, vol. 31, pp. 253-259, 1983.
[4] S. K. Adhikari, 'QUANTUM SCATTERING IN 2 DIMENSIONS,' American Journal of Physics, vol. 54, pp. 362-367, 1986.
[5] T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Kall, 'Magnetic-field enhancement in gold nanosandwiches,' Optics Express, vol. 14, pp. 8240-8246, 2006.
[6] P. W. Zhai, Y. K. Lee, G. W. Kattawar, and P. Yang, 'Implementing the near- to far-field transformation in the finite-difference time-domain method,' Applied Optics, vol. 43, pp. 3738-3746, 2004.
[7] J. D. Destree and T. P. Snow, 'UNIDENTIFIED FEATURES IN THE ULTRAVIOLET SPECTRUM OF X Per,' Astrophysical Journal, vol. 697, pp. 684-692, 2009.
[8] V. Villamizar and O. Rojas, 'Time-dependent numerical method with boundary-conforming curvilinear coordinates applied to wave interactions with prototypical antennas,' Journal of Computational Physics, vol. 177, pp. 1-36, 2002.
[9] K. S. Yee, 'NUMERICAL SOLUTION OF INITIAL BOUNDARY VALUE PROBLEMS INVOLVING MAXWELLS EQUATIONS IN ISOTROPIC MEDIA,' Ieee Transactions on Antennas and Propagation, vol. AP14, pp. 302-&, 1966.
[10] L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, 'Surface plasmons at single nanoholes in Au films,' Applied Physics Letters, vol. 85, pp. 467-469, 2004.
[11] M. Y. Wang, J. Xu, J. Wu, Y. B. Yan, and H. L. Li, 'FDTD study on scattering of metallic column covered by double-negative metamaterial,' Journal of Electromagnetic Waves and Applications, vol. 21, pp. 1905-1914, 2007.
[12] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, 'Negative refraction by photonic crystals,' Nature, vol. 423, pp. 604-605, 2003.
[13] S. C. Hagness, A. Taflove, and J. E. Bridges, 'Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna-array element,' Ieee Transactions on Antennas and Propagation, vol. 47, pp. 783-791, 1999.
[14] J. Kim, T. Yoon, and J. Choi, 'Design of an ultra wide-band printed monopole antenna using FDTD and genetic algorithm,' Ieee Microwave and Wireless Components Letters, vol. 15, pp. 395-397, 2005.
[15] D. B. Davidson, Computational Electromagnetics for RF and Microwave Engineering: Cambridge university press, 2005.
[16] G. F. BOHREN and D. R. HUFFMAN, Absorption and Scattering of Light by Small Particles. New York: Wiley, 1983.
[17] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method. Boston: Artech House, 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43251-
dc.description.abstract本篇論文主要是在討論如何將電磁理論裡的光學定理 (optical theorem) 使用在有限差分時域法 (finite-difference time-domain method) 之中,並且因為二維的有限差分時域法程式攥寫上較為容易所以在此只對二維的光學定理來做討論。首先是改寫光學定理原來的形式,使它能夠使用有限差分時域法裡習慣使用的符號來表示,並且介紹本論文裡為了使用光學定理而使用的額外功能,其中包含有分離散射場於總場的總場散射場技巧 (total-field / scattered-field technique),還有使用近場資料來計算遠場場值的近場至遠場轉換 (near-to-far field transformation ),接著是一般使用上都不可或缺的吸收邊界,在這裡是選用完美吸收邊界 (perfectly matched layer absorbing boundary condition)。最後是用光學定理來計算二維無吸收圓柱的散射截面 (scattering cross section),並且和解析解米氏理論 (Mie theory) 比較後觀察其誤差隨空間解析度的變化,其趨勢大體而言如有限差分時域法所擁有的二階準確度。同時也和其他用來計算散射截面 (scattering cross section) 的方法比較彼此的誤差差異,這些用來比較的方法有使用遠場的雷達截面 (radar cross section) 來計算,還有在近場直接使用散射截面 (scattering cross section) 定義還有消光截面 (extinction cross section) 定義這三種。最後得到的結果是使用光學定理來計算的誤差總是比較大一些,目前認為是因為有限差分時域法的格子點異方性 (anisotropy) 特性所造成的,並且如果針對零度角的光速來修正,可以得到光學定理能有最好的準確度。zh_TW
dc.description.abstractIn this thesis, we discuss how to apply the optical theorem to the finite-difference time-domain method (FDTD). Because it is easier to write the FDTD code in two dimensions, we only investigate the two-dimensional optical theorem. First, we rewrite the form of the optical theorem to conveniently put into execution in the FDTD simulation and introduce some techniques which are used in the FDTD method to practice the optical theorem. There are (1) scattered-field / total-field technique (SFTF), which can separate the scattered field from the total field, (2) the near-to-far field transformation (NTFF), which could calculate the far field from the near-field data, and (3) the perfectly matched layer absorbing boundary condition (PML), which could absorb the electromagnetic wave. Then, we apply the optical theorem to calculate the scattering cross section of the non-absorbing cylinder which has the analytical solution called the Mie theory. With the changes of the grid size, the inaccuracies have the trend approaching to the second order-accuracy of the FDTD method. We also compare the inaccuracy between the different methods which are used to calculate the scattering cross section. The first method is the sum of RCS method. The second and third methods are to apply the definition of the scattering cross section and the definition of the extinction cross section in the near-field region. Finally, we observe that the inaccuracy of the optical theorem is larger than the others and suspect that it is induced by the anisotropy of the FDTD square grids.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:45:10Z (GMT). No. of bitstreams: 1
ntu-98-R96941051-1.pdf: 771666 bytes, checksum: fefc52825bdc0718f16d150cc87de222 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書… Ⅰ
誌謝… Ⅱ
中文摘要… Ⅲ
英文摘要… Ⅳ
目錄… Ⅴ
圖目錄… Ⅶ
第一章 序論 1
1-1 前言 1
1-2 本文內容 2
第二章 Optical theorem 4
2-1 Optical theorem簡介 4
2-2 Extinction cross section 5
2-3二維與三維的optical theorem敘述 9
第三章 FDTD簡介 12
3-1 Central difference 12
3-2 Maxwell’s equations 13
3-3 Yee algorithm 17
3-4 Courant limit 23
3-5 Source 25
3-6 The total-field / scattered-field technique 26
3-7 Perfectly matched layer absorbing boundary condition 27
3-8 Near-to-far field transformation 31
第四章 二維Optical Theorem的使用 35
4-1 TMz Mode公式 35
4-2 TMz Mode公式推導 36
4-3 TEz Mode公式 39
4-4 TEz Mode公式推導 40
4-5 FDTD中所需功能 43
第五章 模擬結果與比較 47
5-1 Scattering cross section計算方法 47
5-2 TEz mode模擬結果比較 50
5-3 TMz mode模擬結果比較 57
5-4 Optical theorem誤差原因討論 63
第六章 結論與未來展望 67
6-1結論 67
6-2未來展望 68
參考文獻 70
圖目錄
圖2.1三維optical theorem 基本架構示意圖 4
圖2.2幾何光學的extinction cross section的說明示意圖 8
圖2.3二維 optical theorem座標配置 10
圖3.1 Central difference的斜率示意圖 13
圖3.2 Leapfrog time-stepping的示意圖 18
圖3.3 Yee space lattice 19
圖3.4 SFTF空間配置圖 26
圖4.1 Optical theorem的座標軸定義與FDTD座標軸的定義關係圖 37
圖4.2 Optical theorem 用於FDTD相關功能的空間配置圖 44
圖5.1圓柱體於FDTD中使用的配置圖 49
圖5.2 =1/60 的scattering cross section比較圖 52
圖5.3 =1/100 的scattering cross section比較圖 52
圖5.4 =1/140 的scattering cross section比較圖 53
圖5.5 =1/180 的scattering cross section比較圖 53
圖5.6 R.M.S.對於1/ 作圖 54
圖5.7關於optical theorem的二次近次曲線圖 56
圖5.8關於sum of RCS method的二次近次曲線圖 56
圖5.9關於scattering cross section定義的二次近次曲線圖 56
圖5.10關於extinction cross section定義的二次近次曲線圖 56
圖5.11 =1/60 的scattering cross section比較圖 59
圖5.12 =1/100 的scattering cross section比較圖 59
圖5.13 =1/140 的scattering cross section比較圖 60
圖5.14 =1/180 的scattering cross section比較圖 60
圖5.15四種方法的R.M.S.對於1/ 作圖 61
圖5.16關於optical theorem的二次近次曲線圖 62
圖5.17關於sum of RCS method的二次近次曲線圖 62
圖5.18關於scattering cross section定義的二次近次曲線圖 63
圖5.19關於extinction cross section的二次近次曲線圖 63
圖5.20修正前相對誤差圖 64
圖5.21修正後TSCS圖 65
圖5.22修正後相對誤差圖 65
dc.language.isozh-TW
dc.subject有限差分時域法zh_TW
dc.subject消光截面zh_TW
dc.subject光學定理zh_TW
dc.subjectfinite-difference time-domain methoden
dc.subjectextinction cross sectionen
dc.subjectoptical theoremen
dc.title光學定理於時域有限差分法光學模擬之應用zh_TW
dc.titleApplying the Optical Theorem in a Finite-Difference Time-Domain Simulation of Light Propagationen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張宏鈞,張世慧
dc.subject.keyword有限差分時域法,光學定理,消光截面,zh_TW
dc.subject.keywordfinite-difference time-domain method,optical theorem,extinction cross section,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2009-07-09
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
753.58 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved