Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43240
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐永豐(Yung-Fong Hsu)
dc.contributor.authorYen-Ho Chenen
dc.contributor.author陳彥合zh_TW
dc.date.accessioned2021-06-15T01:44:31Z-
dc.date.available2009-07-14
dc.date.copyright2009-07-14
dc.date.issued2009
dc.date.submitted2009-07-09
dc.identifier.citationCattell, J. (1886). The influence of the intensity of the stimulus on the length of the reaction time. Brain, 8, 512-515.
Derman, C. (1957). Non-parametric up-and-down experimentation. Annals of Mathematical Statistics, 28(3), 795-798.
Dixon, W. J., & Mood, A. M. (1948). A method for obtaining and analyzing sensitivity data. Journal of the American Statistical Association, 43(241), 109-126.
Durham, S. D., & Flournoy, N. (1993). Convergence results for an adaptive ordinal urn design. Journal of the Theory of Probability and its Applications, 37(1), 14-17.
Durham, S. D., & Flournoy, N. (1995). Up-and-down designs I: Stationary treatment distributions. In N. Flournoy and W. F. Rosenberger (Eds.). Adaptive Designs, IMS Lecture Notes, 25. Hayward CA.
Durham, S. D., Flournoy, N., & Rosenberger, W. (1997). A random walk rule for phase I clinical trials. Biometrics, 53(2), 745-760.
Faes, L., Nollo, G., Ravelli, F., Ricci, L., Vescovi, M., Turatto, M., et al. (2007). Small-sample characterization of stochastic approximation staircases in forced-choice adaptive threshold estimation. Perception & Psychophysics, 69(2), 254-262.
Falmagne, J.-C. (1985). Elements of psychophysical theory. Oxford University Press, New York.
García-Pérez, M. A. (1998). Forced-choice staircases with fixed step sizes: Asymptotic and small-sample properties. Vision Research, 38(12), 1861-1881.
García-Pérez, M. A. (2001). Yes-no staircases with fixed step sizes: Psychometric properties and optimal setup. Optometry and Vision Science, 78(1), 56-64.
Giovagnoli, A., & Pintacuda, N. (1998). Properties of frequency distributions induced by general ‘up-and-down’ methods for estimating quantiles. Journal of Statistical Planning and Inference, 74(1), 51-63.
Hsu, Y.-F. (2005). A generalization of Piéron's law to include background intensity and latency distribution. Journal of Mathematical Psychology, 49(6), 450-463.
Huang, C. B., Zhou, Y., & Lu, Z. L. (2008). Broad bandwidth of perceptual learning in the visual system of adults with anisometropic amblyopia. Proceedings of the National Academy of Sciences, 105(10), 4068-4073.
Kaernbach, C. (1991). Simple adaptive testing with the weighted up-down method. Perception & Psychophysics, 49(3), 227-229.
Kesten, H. (1958). Accelerated stochastic approximation. Annals of Mathematical Statistics, 29(1), 41-59.
Kohfeld, D. L. (1971). Simple reaction time as a function of stimulus intensity in decibels of light and sound. Journal of Experimental Psychology, 88(2), 251-257.
Leek, M. R. (2001). Adaptive procedures in psychophysical research. Perception & Psychophysics, 63(8), 1279-1292.
Levitt, H. (1971). Transformed up-down methods in psychoacoustics. Journal of the Acoustical Society of America, 49, 467-477.
Luce, R. (1986). Response times: Their role in inferring elementary mental organization. Oxford University Press, New York.
Mansfield, R. (1973). Latency functions in human vision. Vision Research, 13(12), 2219-2234.
Oron, A. (2007). Up-and-down and the percentile-finding problem. PhD thesis, Department of Statistics, University of Washington.
Polat, U., Ma-Naim, T., Belkin, M., & Sagi, D. (2004). Improving vision in adult amblyopia by perceptual learning. Proceedings of the National Academy of Sciences, 101(17), 6692-6697.
R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Rammsayer, T. H. (1992). An experimental comparison of the weighted up-down method and the transformed up-down method. Bulletin of the Psychonomic Society, 30(5), 425-427.
Robbins, H., & Monro, S. (1951). A stochastic approximation method. Annals of Mathematical Statistics, 22, 400-407.
Sahraie, A., Trevethan, C. T., MacLeod, M. J., Murray, A. D., Olson, J. A., & Weiskrantz, L. (2006). Increased sensitivity after repeated stimulation of residual spatial channels in blindsight. Proceedings of the National Academy of Sciences, 103(40), 14971-14976.
Taylor, M. M., & Creelman, C. D. (1967). PEST: Efficient estimates on probability functions. Journal of the Acoustical Society of America, 41, 782-787.
Treutwein, B. (1995). Adaptive psychophysical procedures. Vision Research, 35(17), 2503-2522.
Wagenmakers, E.-J., & Brown, S. (2007). On the linear relation between the mean and the standard deviation of a response time distribution. Psychological Review, 114(3), 830-841.
Wetherill, G., & Levitt, H. (1965). Sequential estimation of points on a psychometric function. British Journal of Mathematical and Statistical Psychology, 18(1), 1-10.
Zhou, Y., Huang, C., Xu, P., Tao, L., Qiu, Z., Li, X., et al. (2006). Perceptual learning improves contrast sensitivity and visual acuity in adults with anisometropic amblyopia. Vision Research, 46(5), 739-750.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43240-
dc.description.abstract無母數適測方法(non-parametric adaptive method)包含固定與非固定梯級(step size)的方法,可應用於心理物理學中偵測與區辨作業(見Leek, 2001;Treutwein, 1995之文獻回顧)。近來,有多名研究者透過模擬的方式比較部份方法的大樣本與小樣本特質(如García-Pérez, 1998, 2001;Faes et al., 2007)。
在本篇論文中,我將藉電腦模擬探討這些方法在是否(yes-no)的偵測作業與簡單反應時間作業的適用性。其中,應用在簡單反應時間的作業可藉以找到引起某反應時間百分位數的刺激強度。在這兩部份的研究,我系統性地操弄起始值、梯級(單ㄧ改變量大小),及反應指標三個向度來探討這些方法的收斂情形。結果顯示,在兩種作業中,以快速隨機接近法(ASA)(Kesten, 1958)的表現最佳。另一方面,在固定梯級的方法中,在偏差硬幣投擲設計(BCD)(Durham & Flournoy, 1993, 1995)使用小的梯級亦可被推薦。此外,結果也指出,在兩種作業中使用結合的方法,即先使用ASA接著再使用BCD,是可行的。
zh_TW
dc.description.abstractIn psychophysical research of detection and discrimination, non-parametric adaptive methods, including the fixed and non-fixed step-size methods, have been used extensively for the estimate of threshold through a combination of decreasing and increasing stimulus steps (see Leek, 2001; Treutwein, 1995, for reviews). In recent years, researchers have focused on the asymptotic and small-sample properties of some of those methods by simulations (e.g., Faes et al., 2007; García-Pérez, 1998, 2001).
In this thesis I systematically investigate via simulations the asymptotic and small-sample properties of some of the non-parametric adaptive methods in two experimental situations, one concerns the yes-no detection task and the other the simple reaction time (RT) task. In particular, the application of adaptive methods for RT experiments provides an alternative to estimate signal intensities that elicit certain (fixed) RT percentiles. The convergences for different starting values, step sizes, and response criteria are systematically investigated in both tasks. The results show that the accelerated stochastic approximation (ASA) (Kesten, 1958) is suitable for both tasks. A fixed-step-size method called the biased coin design (BCD) (Durham & Flournoy, 1993, 1995) with small step sizes is also recommended. Furthermore, our simulation results show that for small sample sizes, it is also feasible to apply ASA first, then followed by BCD, as the combined method.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:44:31Z (GMT). No. of bitstreams: 1
ntu-98-R96227101-1.pdf: 1350758 bytes, checksum: 85f3419460c526e7e342914ca91335d3 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsIntroduction ................................................................................................................................ 1
Non-Parametric Adaptive Methods ......................................................................................... 4
A. Simple Up-Down (SUD) Method ..................................................................................... 4
B. Transformed Up-Down (TUD) Method ........................................................................... 5
C. Weighted Up-Down (WUD) Method ................................................................................ 6
D. Derman’s Up-Down (DUD) Method ................................................................................ 6
E. Biased Coin Design (BCD) ................................................................................................. 8
F. Stochastic Approximation (SA) ......................................................................................... 8
G. Accelerated Stochastic Approximation (ASA) ................................................................. 9
H. Other Methods .................................................................................................................... 9
SectionⅠ– Non-Parametric Adaptive Methods for Threshold .......................................... 12
Study 1(a) .............................................................................................................................. 16
Study 1(b) .............................................................................................................................. 27
Study 1(c) ...............................................................................................................................31
Conclusion ........................................................................................................................... 34
SectionⅡ – Non-Parametric Adaptive Methods in Simple Reaction Time Studies .......... 37
Study 2(a) .............................................................................................................................. 40
Study 2(b) .............................................................................................................................. 47
Study 2(c) .............................................................................................................................. 50
Conclusion ........................................................................................................................... 52
Summary .................................................................................................................................. 54
Reference .................................................................................................................................. 58
Appendix A .............................................................................................................................. 62
dc.language.isoen
dc.title無母數適測方法在心理物理學與簡單反應時間研究之應用zh_TW
dc.titleApplying Non-Parametric Adaptive Methods to Psychophysical and Simple Reaction Time Studiesen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee袁之琦(Jy-Chyi Yuan),葉怡玉(Yei-Yu Yeh)
dc.subject.keywordDerman上下法,偏差硬幣投擲設計,快速隨機接近法,加權上下法,簡單反應時間,轉換上下法,偵測作業,隨機接近法,無母數適測方法,zh_TW
dc.subject.keywordaccelerated stochastic approximation,biased coin design,detection,non-parametric adaptive method,simple reaction time,stochastic approximation,transformed up-down method,weighted up-down method,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2009-07-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept心理學研究所zh_TW
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
1.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved