Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43201
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林?輝
dc.contributor.authorKai-Chiang Yangen
dc.contributor.author楊凱強zh_TW
dc.date.accessioned2021-06-15T01:42:18Z-
dc.date.available2010-07-23
dc.date.copyright2009-07-23
dc.date.issued2009
dc.date.submitted2009-07-13
dc.identifier.citation1. Slack JM. Developmental biology of the pancreas. Development 121(6):1569-1580, 1995.
2. Whitcomb DC, Lowe ME. Human pancreatic digestive enzymes. Dig Dis Sci 52(1):1-17, 2007.
3. SR Bloom, JM Polak. Gut hormones. Proc Nutr Soc 37(3):259-271, 2007.
4. Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. PNAS 103(7):2334-2339, 2006.
5. Korc M, Owerbach D, Quinto C, Rutter WJ. Pancreatic islet-acinar cell interaction: amylase messenger RNA levels are determined by insulin. Science 213(4505):351-343, 1981.
6. Dunning BE, Foley JE, Ahrén B. Alpha cell function in health and disease: influence of glucagon-like peptide-1. Diabetologia 48(9):1700-1713, 2005.
7. Meyts de P. Insulin and its receptor: structure, function and evolution. BioEssays 26(12):1351-1362, 2004.
8. Strowski MZ, Parmar RM, Blake AD, Schaeffer JM. Somatostatin inhibits insulin and glucagon secretion via two receptors subtypes: an in vitro study of pancreatic islets from somatostatin receptor 2 knockout mice. Endocrinology 141(1):111-117, 2000.
9. Schubert ML. Hormonal regulation of gastric acid secretion. Curr Gastroenterol Rep 10(6):523-527, 2008.
10. Seymour NE, Brunicardi FC, Chaiken RL, Lebovitz HE, Chance RE, Gingerich RL, Elahi D, Anderson DK. Reversal of abnormal glucose production after pancreatic resection by pancreatic polypeptide administration in man. Surgery 104:119-129, 1988.
11. Kono T, Hanazaki K, Yazawa K, Ashizawa S, Fisher WE, Wang XP, Nosé Y, Brunicardi FC. Pancreatic polypeptide administration reduces insulin requirements of artificial pancreas in pancreatectomized dogs. Artif Organs 29(1):83-87, 2005.
12. Rosenfeld L. Insulin: discovery and controversy. Clin Chem 48(12):2270-2288, 2002.
13. Stump CS, Short KR, Bigelow ML, Schimke JM, Nair KS. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. PNAS 100(13):7996-8001, 2003.
14. Ohneda K, Ee H, German M. Regulation of insulin gene transcription. Semin Cell Dev Biol 11(4):227-233, 2000.
15. Ren J, Jin P, Wang E, Liu E, Harlan DM, Li X, Stroncek DF. Pancreatic islet cell therapy for type I diabetes: understanding the effects of glucose stimulation on islets in order to produce better islets for transplantation. J Transl Med 3(5):1-15, 2007.
16. Wek RC, Jiang HY, Anthony TG. Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34(1):7-11, 2006.
17. Harding HP, Ron D. Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51(S3):S455-S461, 2002.
18. Orci L, Ravazzola M, Storch MJ, Anderson RG, Vassalli JD, Perrelet A. Proteolytic maturation of insulin is a post-Golgi event which occurs in acidifying clathrin-coated secretory vesicles. Cell 49(6):865-868, 1987.
19. Orci L, Ravazzola M, Amherdt M, Yanaihara C, Yanaihara N, Halban P, Renold AE, Perrelet A. Insulin, not C-peptide (proinsulin), is present in crinophagic bodies of the pancreatic B-cell. J Cell Biol 98(1):222-228, 1984.
20. Beta cell biology. http://www.betacell.org/content/articles/articlepanel.php?aid=1&pid=2
21. Dodson G, Steiner D. The role of assembly in insulin's biosynthesis. Curr Opin Struct Biol 8(2):189-194, 1998.
22. Zoete V, Meuwly M, Karplus M. A comparison of the dynamic behavior of monomeric and dimeric insulin shows structural rearrangements in the active monomer. J Mol Biol 342(3):913-929, 2004.
23. Henquin JC, Nenquin M, Stiernet P, Ahren B. In vivo and in vitro glucose-induced biphasic insulin secretion in the mouse. Pattern and role of cytoplasmic Ca2+ and amplification signals in beta-cells. Diabetes 55(2):441-451, 2006.
24. Bratanova-Tochkova TK, Cheng H, Daniel S, Gunawardana S, Liu YJ, Mulvaney-Musa J, Schermerhorn T, Straub SG, Yajima H, Sharp GW. Triggering and augmentation mechanisms, granule pools, and biphasic insulin secretion. Diabetes 51(S1):S83-S90, 2002.
25. Rorsman P, Renstrom E. Insulin granule dynamics in pancreatic beta cells. Diabetologia 46(8):1029-1045, 2003.
26. Virkamäki A, Ueki K, Kahn CR. Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 103(7):931-943, 1999.
27. AR Saltiel, CR Kahn. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799-806, 2001.
28. Shpakov AO, Pertseva MN. Structural and functional characterization of insulin receptor substrate proteins and the molecular mechanisms of their interaction with insulin superfamily tyrosine kinase receptors and effector proteins. Membr Cell Biol 13(4):455-484, 2000.
29. Pannala R, Leirness JB, Bamlet WR, Basu A, Petersen GM, Chari ST. Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus. Gastroenterology 134(4):981-987, 2008.
30. Bromberg JS, LeRoith D. Diabetes Cure - Is the glass half full? N Engl J Med 335(13):1372-1374, 2006.
31. Hanazaki K, Nosé Y, Brunicardi FC. Artificial endocrine pancreas. J Am Coll Surg 193(3):310-322, 2001.
32. Mathis D, Vence L, Benoist C. Beta-Cell death during progression to diabetes. Nature 414(6865):792-798, 2001.
33. Cavaghan MK, Ehrmann DA, Polonsky KS. Interactions between insulin resistance and insulin secretion in the development of glucose intolerance. J Clin Invest 106:329-333, 2000.
34. Pennant ME, Bluck LJ, Marcovecchio ML, Salgin B, Hovorka R, Dunger DB. Insulin administration and rate of glucose appearance in people with type 1 diabetes. Diabetes Care 31(11):2183-2187, 2008.
35. Kudva YC, Basu A, Jenkins GD, Pons GM, Vogelsang DA, Rizza RA, Smith SA, Isley WL. Glycemic variation and hypoglycemia in patients with well-controlled type 1 diabetes on a multiple daily insulin injection program with use of glargine and ultralente as basal insulin. Endocr Pract 13(3):244-250. 2007.
36. Springer D, Dziura J, Tamborlane WV, Steffen AT, Ahern JH, Vincent M, Weinzimer SA. Optimal control of type 1 diabetes mellitus in youth receiving intensive treatment. J Pediatr 149(2):227-232, 2006.
37. Nuboer R, Borsboom GJ, Zoethout JA, Koot HM, Bruining J. Effects of insulin pump vs. injection treatment on quality of life and impact of disease in children with type 1 diabetes mellitus in a randomized, prospective comparison. Pediatr Diabetes 28;9(4 Pt 1):291-296, 2008.
38. Pickup J, Keen H. Continuous subcutaneous insulin infusion at 25 years: evidence base for the expanding use of insulin pump therapy in type 1 diabetes. Diabetes Care 25:593-598, 2002.
39. Hanas R, Ludvigsson J. Hypoglycemia and ketoacidosis with insulin pump therapy in children and adolescents. Pediatr Diabetes 7 (S4): 32-38, 2006.
40. Kelly WD, Lillehei RC, Merke FK, Idezuki Y, goetz FC. Allotransplantation of the pancreas and duodenum along with the kidney in diabetic mephropathy. Surgery 61:827-837, 1967.
41. Dieterle CD, Arbogast H, Illner WD, Schmauss S, Landgraf R. Metabolic follow-up after long-term pancreas graft survival. Eur J Endocrinol 156:603-610, 2007.
42. Gruessner AC, Sutherland DER. Pancreas transplant outcomes for United States (US) and non-US cases as reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR) as of June 2004. Clin Transplant 19:433-455, 2005.
43. Dean PG, Kudva YC, Stegall MD. Long-term benefits of pancreas transplantation. Curr Opin Organ Transplant 13:85-90, 2008.
44. Calne R. Clinical transplantation: current problems, possible solutions. Philos Trans R Soc Lond B Biol Sci 360(1461):1797-1801, 2005.
45. Galandiuk S, Sterioff S. The problems of organ donor shortage. Mayo Clin Proc 80(3):320-321, 2005.
46. Goodman J, Becker YT. Pancreas surgical complications. Curr Opin Organ Transplant 14(1):85-89, 2009.
47. Kandaswamy R, Sutherland DE. Pancreas versus islet transplantation in diabetes mellitus: How to allocate deceased donor pancreata? Transplant Proc 38(2):365-367, 2006.
48. Venstrom JM, McBride MA, Rother KI, Hirshberg B, Orchard TJ, Harlan DM. Survival after pancreas transplantation in patients with diabetes and preserved kidney function. JAMA 290(21):2817-2823, 2003.
49. Merani S, Shapiro AM. Current status of pancreatic islet transplantation. Clin Sci 110(6):611-625, 2006.
50. Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, Lakey JR, Shapiro AM. Five-year follow-up after clinical islet transplantation. Diabetes 54(7):2060-2069, 2005.
51. Ricordi C, Strom TB. Clinical islet transplantation: advances and immunological challenges. Nat Rev Immunol 4(4):259-268, 2004.
52. Mark AN, David MH. Pancreatic islet transplantation. PLoS Medicine 1(3):198-201, 2004.
53. Korsgren O, Lundgren T, Felldin M, Foss A, Isaksson B, Permert J, Persson NH, Rafael E, Rydén M, Salmela K, Tibell A, Tufveson G, Nilsson B. Optimising islet engraftment is critical for successful clinical islet transplantation. Diabetologia 51(2):227-232, 2008.
54. Boker A, Rothenberg L, Hernandez C, Kenyon NS, Ricordi C, Alejandro R. Human islet transplantation: update. World J Surg 25(4):481-486, 2001.
55. Ryan EA, Lakey JR, Rajotte RV, Korbutt GS, Kin T, Imes S, Rabinovitch A, Elliott JF, Bigam D, Kneteman NM, Warnock GL, Larsen I, Shapiro AM. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes 50(4):710-719, 2001.
56. Ryan EA, Bigam D, Shapiro AM. Current indications for pancreas or islet transplant. Diabetes Obes Metab 8(1):1-7, 2006.
57. Sutherland DER. Beta-cell replacement by transplantation in diabetes mellitus: which patients at what risk, which way (when pancreas, when islets), and how to allocate deceased donor pancreases. Curr Opin Organ Transplant 10(2):147-149, 2005.
58. Kaufman DB, Salvalaggio PRO. Immunosuppression for pancreas transplantation. Curr Opin Organ Transplant 10(2):169-175, 2005.
59. Singh RP, Stratta RJ. Advances in immunosuppression for pancreas transplantation. Curr Opin Organ Transplant 13(1):79-84, 2008.
60. Vial T, Descotes J. Immunosuppressive drugs and cancer. Toxicology 185(3):229-240, 2003.
61. Thomas T. Expert reviews in molecular medicine 6:(00)00186-1a, 2000.
62. Edge AS, Gosse ME, Dinsmore J. Xenogeneic cell therapy: current progress and future developments in porcine cell transplantation. Cell Transplant 7(6):525-539, 1998.
63. MacKenzie DA, Hullett DA, Sollinger HW. Xenogeneic transplantation of porcine islets: an overview. Transplantation 76(6):887-891, 2003.
64. Mayer JP. Insulin structure and function. Biopolymers 88(5):687-713, 2007.
65. Deschamps JY, Roux FA, Saï P, Gouin E. History of xenotransplantation. Xenotransplantation 12(2):91-109, 2005.
66. Williams PW. Notes on diabetes treated with extract and by grafts of sheep’s pancreas. BMJ 2:1303, 1894.
67. Groth CG, Korsgren O, Tibell A, Tollemar J, Möller E, Bolinder J, Ostman J, Reinholt FP, Hellerström C, Andersson A. Transplantation of porcine fetal pancreas to diabetic patients. Lancet 344(894):1402-1404, 1994.
68. Valdes-Gomzalaez RA, Elliot RB, Dorantes LM, Escobar L, Garibay GN, Bracho E, Macias C, Silva L, Copeman L, Valencia DJG White. Porcine islet xenografts can survive and function in type 1 diabetic patients in the presence of both preexisting and elicited anti-pig antibodies. Miami, USA: Abstract presented at the XIXth International Congress of the Transplantation Society, 2002.
69. Tonomura N, Shimizu A, Wang S, Yamada K, Tchipashvili V, Weir GC, Yang YG. Pig islet xenograft rejection in a mouse model with an established human immune system. Xenotransplantation 15(2):129-135, 2008.
70. Robert L, Joseph PV. Tissue Engineering. Science 260:920-926, 1993.
71. Eugene B. Tissue engineering in perspective. In: Robert PL, Robert L, Joseph V. Principle of tissue engineering. San Diego: Academic press; 2000:xxxv-xxxvi.
72. Chang CH, Liu HC, Lin CC, Chou CH, Lin FH. Gelatin-chondroitin-hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials 24(26):4853-4858, 2003.
73. Yang SH, Wu CC, Shih TT, Chen PQ, Lin FH. Three-dimensional culture of human nucleus pulposus cells in fibrin clot: comparisons on cellular proliferation and matrix synthesis with cells in alginate. Artif Organs 32(1):70-73, 2008.
74. Paraskevas S, Maysinger D, Wang R, Duguid TP, Rosenberg L. Cell loss in isolated human islets occurs by apoptosis. Pancreas 20(3):270-276, 2000.
75. Rosenberg L, Wang R, Paraskevas S, Maysinger D. Structural and functional changes resulting from islet isolation lead to islet cell death. Surgery 126(2):393-398, 1999.
76. Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213(2):341-347, 2007.
77. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36(4):568-584, 2004.
78. Abdallah BM, Kassem M. Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther 15(2):109-116, 2008.
79. Sgodda M, Aurich H, Kleist S, Aurich I, König S, Dollinger MM, Fleig WE, Christ B. Hepatocyte differentiation of mesenchymal stem cells from rat peritoneal adipose tissue in vitro and in vivo. Exp Cell Res 313(13):2875-2886, 2007.
80. Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, Mori H. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12(4):459-465, 2006.
81. Kuo TF, Huang AT, Chang HH, Lin FH, Chen ST, Chen RS, Chou CH, Lin HC, Chiang H, Chen MH. Regeneration of dentin-pulp complex with cementum and periodontal ligament formation using dental bud cells in gelatin-chondroitin-hyaluronan tri-copolymer scaffold in swine. J Biomed Mater Res A 86(4):1062-1068, 2008.
82. Sakurai T, Satake A, Sumi S, Inoue K, Nagata N, Tabata Y, Miyakoshi J. The efficient prevascularization induced by fibroblast growth factor 2 with a collagen-coated device improves the cell survival of a bioartificial pancreas. Pancreas 28(3):e70-e79, 2004.
83. Miao G, Mace J, Kirby M, Hopper A, Peverini R, Chinnock R, Shapiro J, Hathout E. In vitro and in vivo improvement of islet survival following treatment with nerve growth factor. Transplantation 81(4):519-524, 2006.
84. Wang RN, Rosenberg L. Maintenance of beta-cell function and survival following islet isolation requires re-establishment of the islet-matrix relationship. J Endocrinol 163(2):181-190, 1999.
85. Cheung HY, Lau TK, Tung-Po Lu, Hui D. A critical review on polymer-based bio-engineered materials for scaffold development. Composites B 38(3):291-300, 2007.
86. Burack WR, Shaw AS. Signal transduction: hanging on a scaffold. Curr Opin Cell Biol 12(2):211-216, 2000.
87. Chang CH, Kuo TF, Lin CC, Chou CH, Chen KH, Lin FH, Liu HC. Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: A porcine model assessed at 18, 24, and 36 weeks. Biomaterials 27(9):1876-1888, 2006.
88. Yelick PC, Vacanti JP. Bioengineered teeth from tooth bud cells. Dent Clin North Am 50(8):191-203, 2006.
89. Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res 81:695-700, 2002.
90. Chou CH, Cheng WT, Lin CC, Chang CH, Tsai CC, Lin FH. TGF-beta1 immobilized tri-co-polymer for articular cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 77(2):338-348, 2006.
91. Schrezenmeir J, Gerö L, Solhdju M, Kirchgessner J, Laue C, Beyer J, Stier H, Müller-Klieser W. Relation between secretory function and oxygen supply in isolated islet organs. Transplant Proc 26(2):809-813, 1994.
92. Carlsson PO,Nordin A, Palm F. pH is decreased in transplanted rat pancreatic islets. Am J Physiol Endocrinol Metab 284: E499-E504, 2003.
93. Chang TM. Semipermeable microcapsules. Science 146:524-525, 1964.
94. Wang TG. Polymer membranes for cell encapsulation. In: Willem MK, Robert PL, William LC. Cell encapsulation technology and therapeutics. Boston: Birkhauser; 1999:29-39.
95. Colton CK, Avgoustiniatos ES. Bioengineering in development of the hybrid artificial pancreas. J Biomech Eng 113(2):153-170, 1991.
96. Li RH. Materials for immunoisolated cell transplantation. Adv Drug Deliv Rev 33(1-2):87-109, 1998.
97. Cotton CK. Engineering challenges in cell encapsulation technology. Trends biotechnol 14(5):158-162, 1996.
98. Cui W, Barr G, Faucher KM, Sun XL, Safley SA, Weber CJ, Chaikof EL. A membrane-mimetic barrier for islet encapsulation. Transplant Proc 36(4):1206-1208, 2004.
99. Granicka LH, Weryński A, Jankowska E, Kawiak J. Membrane for immunoisolation properties before, and post implantation: preliminary report. Artif Cells Blood Substit Immobil Biotechnol 32(4):539-548, 2004.
100. Lanza RP, Beyer AM, Chick WL. Xenogenic humoral responses to islets transplanted in biohybrid diffusion chambers. Transplantation 57(9):1371-1375, 1994.
101. Qi Y, Gu Y, Sakata N, Kim D, Shirouzu Y, Yamamoto S, Hiura A, Sumi S, Inoue K. PVA hydrogel sheet macroencapsulation for the bioartificial pancreas. Biomaterials 25:5885-5892, 2004.
102. Lanza RP, Kühtreiber WM, Ecker D, Staruk JE, Chick WL. Xenotransplantation of porcine and bovine islets without immunosuppression using uncoated alginate microspheres. Transplantation 59(10):1377-1384, 1995.
103. Yang KC, Wu CC, Cheng YH, Kuo TF, Lin FH. Chitosan/gelatin hydrogel as immunoisolative matrix for injectable bioartificial pancreas. Xenotransplantation 15:407-516, 2008.
104. Yang KC, Wu CC, Cheng YH, Kuo TF, Lin FH. Chitosan/Gelatin Hydrogel Prolonged the Function of Insulinoma/Agarose Microspheres In Vivo During Xenogenic Transplantation. Transplant Pro 40(10):3623-3626, 2008.
105. Orive G, Hernández RM, Gascón AR, Calafiore R, Chang TM, de Vos P, Hortelano G, Hunkeler D, Lacík I, Shapiro AM, Pedraz JL. Cell encapsulation: promise and progress. Nat Med 9(1):104-107, 2003.
106. Murua A, Portero A, Orive G, Hernández RM, de Castro M, Pedraz JL. Cell microencapsulation technology: towards clinical application. J Control Release 132(2):76-83, 2008.
107. Zimmermann H, Shirley SG, Zimmermann U. Alginate-based encapsulation of cells: past, present, and future. Curr Diab Rep 7(4):314-320, 2007.
108. Wright JR Jr, Polvi S, MacLean H. Experimental transplantation with principal islets of teleost fish (Brockmann bodies). Long-term function of tilapia islet tissue in diabetic nude mice. Diabetes 41(12):1528-1532, 1992.
109. Strand BL, Gåserød O, Kulseng B, Espevik T, Skjåk-Baek G. Alginate-polylysine-alginate microcapsules: effect of size reduction on capsule properties. J Microencapsul 19(5):615-630, 2002.
110. Chandy T, Mooradian DL, Rao GH. Evaluation of modified alginate-chitosan-polyethylene glycol microcapsules for cell encapsulation. Artif Organs 23(10):894-903, 1999.
111. Iwata H, Takagi T, Amemiya H, Shimizu H, Yamashita K, Kobayashi K, Akutsu T. Agarose for a bioartificial pancreas. J Biomed Mater Res 26(7):967-977, 1992.
112. de Groot M, Schuurs TA, Keizer PP, Fekken S, Leuvenink HG, van Schilfgaarde R. Response of encapsulated rat pancreatic islets to hypoxia. Cell Transplant 12(8):867-875, 2003.
113. Fritschy WM, de Vos P, Groen H, Klatter FA, Pasma A, Wolters GH, van Schilfgaarde R. The capsular overgrowth on microencapsulated pancreatic islet grafts in streptozotocin and autoimmune diabetic rats. Transpl Int 7(4):264-271, 1994.
114. de Vos P, de Haan BJ, Wolters GH, Strubbe JH, van Schilfgaarde R. Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets. Diabetologia 40(3):262-270, 1997.
115. LH Granicka, A Weryński, J Kawiak. Polypropylene silanized membranes for immunoisolation. Separation and Purification Technology 41(3):221-230, 2005.
116. Sakai S, Ono T, Ijima H, Kawakami K. MIN6 cells-enclosing aminopropyl-silicate membrane templated by alginate gels differences in guluronic acid content. Int J Pharm 270(1-2):65-73, 2004.
117. Tejal AD, Derek H, Mauro F. Characterization of micromachined silicon membranes for immunoisolation and bioseparation applications. J Membr Sci 159(1-2):221-231, 1999.
118. Knight KR, Uda Y, Findlay MW, Brown DL, Cronin KJ, Jamieson E, Tai T, Keramidaris E, Penington AJ, Rophael J, Harrison LC, Morrison WA. Vascularized tissue-engineered chambers promote survival and function of transplanted islets and improve glycemic control. FASEB J 20(3):565-567, 2006.
119. Sakurai T, Satake A, Nagata N, Gu Y, Hiura A, Doo-Hoon K, Hori H, Tabata Y, Sumi S, Inoue K. The development of new immunoisolatory devices possessing the ability to induce neovascularization. Cell Transplant 12(5):527-535, 2003.
120. Inoue K, Fujisato T, Gu YJ, Burczak K, Sumi S, Kogire M, Tobe T, Uchida K, Nakai I, Maetani S. Experimental hybrid islet transplantation: application of polyvinyl alcohol membrane for entrapment of islets. Pancreas 7(5):562-568, 1992.
121. Aung T, Inoue K, Kogire M, Doi R, Kaji H, Tun T, Hayashi H, Echigo Y, Wada M, Imamura M, Fujisato T, Maetani S, Iwata H, Ikada Y. Comparison of various gels for immobilization of islets in bioartificial pancreas using a mesh-reinforced polyvinyl alcohol hydrogel tube. Transplantation Proc 27:619-621, 1995.
122. Qi M, Gu Y, Sakata N, Kim D, Shirouzu Y, Yamamoto C, Hiura A, Sumi S, Inoue K. PVA hydrogel sheet macroencapsulation for the bioartificial pancreas. Biomaterials 25(27):5885-5892, 2004.
123. de Groot M, Schuurs TA, van Schilfgaarde R. Causes of limited survival of microencapsulated pancreatic islet grafts. J Surg Res 121(1):141-150, 2004.
124. van Schilfgaarde R, de Vos P. Factors influencing the properties and performance of microcapsules for immunoprotection of pancreatic islets. J Mol Med 77(1):199-205, 1999.
125. de Vos P, Van Straaten JF, Nieuwenhuizen AG, de Groot M, Ploeg RJ, de Haan BJ, van Schilfgaarde R. Why do microencapsulated islet grafts fail in the absence of fibrotic overgrowth? Diabetes 48(7):1381-1388, 1999.
126. de Vos P, Hamel AF, Tatarkiewicz K. Considerations for successful transplantation of encapsulated pancreatic islets. Diabetologia 45(2):159-173, 2002.
127. Lin FH. Tissue engineering of pancreas. J Genet Mol Biol 13(2):145, 2002.
128. Hussain MA, Theise ND. Stem-cell therapy for diabetes mellitus. Lancet 364(9429):203-205, 2004.
129. Kim D, Gu Y,Ishii M, Fujimiya M, Qi M, Nakamura N, Yoshikawa T, Sumi S, Inoue K. In vivo functioning and transplantable mature pancreatic islet-like cell clusters differentiated from embryonic stem cell. Pancreas 27(2):e34-e41, 2003.
130. Tateishi K, He J, Taranova O, Liang G, D'Alessio AC, Zhang Y. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 283(46):31601-31697, 2008.
131. Karen JLB, Scott P, James FK. Biomaterial developments for bone tissue engineering. Biomaterials 21(23):2347-2359, 2000.
132. Brown WE, Chow LC. A new calcium phosphate setting cement. J Dent Res 62:672, 1983.
133. Liao CJ, Lin FH, Chen KS, Sun JS. Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomaterials 20(19):1807-1813, 1999.
134. Miyamoto Y, Ishikawa K, Takeshi M, Toh T, Yoshida Y, Nagayama M, Kon M, Asaoka K. Tissue response to fast-setting calcium phosphate cement in bone. J Biomed Mater Res 37:457-464, 1997.
135. Yuan H, Li Y, de Bruijn JD, de Groot K, Zhang X. Tissue responses of calcium phosphate cement: a study in dogs. Biomaterials 21(12):1283-1290, 2000.
136. Ambard AJ, Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties. J Prosthodont 15(5):321-328, 2006.
137. Salazar-Banuelos A,Wright J, Sigalet D, Benitez-Bribiesca L. The bone marrow as a potential receptor site for pancreatic islet grafts. Arch Med Res 39:139-141, 2008.
138. Salazar-Banuelos A,Wright JR Jr, Sigalet D, Benitez-Bribiesca L. Pancreatic islet transplantation into the bone marrow of the rat. Am J Surg 195:674-678, 2008.
139. ISO10993-5 Tests for in vitro cytotoxicity.
140. ISO10993-12 Sample preparation and reference materials
141. Grant CS. Insulinoma. Best Pract Res Clin Gastroenterol 19(5):783-798, 2005.
142. Montoro E, Lemus D, Echemendia M, Martin A, Portaels F, Palomino JC. Comparative evaluation of the nitrate reduction assay, the MTT test, and the resazurin microtitre assay for drug susceptibility testing of clinical isolates of Mycobacterium tuberculosis. J Antimicrob Chemother 55(4):500-505, 2005.
143. Fotakis G, Timbrell JA. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160(2):171-177, 2006.
144. Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ. Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res 257(1):162-171, 2000.
145. Peskin AV, Winterbourn CC. A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin Chim Acta 293(1-2):157-166, 2000.
146. Shelby JP, Edgar JS, Chiu DT. Monitoring cell survival after extraction of a single subcellular organelle using optical trapping and pulsed-nitrogen laser ablation. Photochem Photobiol 81(4):994-1001, 2005.
147. Kizilel S, Garfinkel M, Opara E. The bioartificial pancreas: progress and challenges. Diabetes Technol Ther 7(6):968-985, 2005.
148. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterial. Semin Immunol 20:86-100, 2008.
149. Emamaullee JA, Shapiro AM, Rajotte RV, Korbutt G, Elliott JF. Neonatal porcine islets exhibit natural resistance to hypoxia-induced apoptosis. Transplantation 82(7):945-952, 2006.
150. Carlsson PO, Palm F, Andersson A, Liss P. Markedly decreased oxygen tension in transplanted rat pancreatic islets irrespective of the implantation site. Diabetes 50(3):489-495, 2001.
151. Rihova B. Immunocompatibility and biocompatibility of cell delivery systems. Adv Drug Deliv Rev 42(1-2):65-80, 2000.
152. Tomoaki U, Junji W, Kazuhiko I. Biocompatible polymer alloy membrane for implantable artificial pancreas. J Membr Sci 208(1):39-48, 2002.
153. Wilson JT, Chaikof EL. Challenges and emerging technologies in the immunoisolation of cells and tissues. Adv Drug Deliv Rev 60(2):124-145, 2008.
154. Merani S, Toso C, Emamaullee J, Shapiro AM. Optimal implantation site for pancreatic islet transplantation. Br J Surg 95(12):1449-1461, 2008.
155. Chen WC, Lin CJH, Ju CP. Transmission electron microscopic study on setting mechanism of tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cement. J Biomed Mater Res A 64(4):664-671. 2003
156. Liu CS, Shen W, Gu YF, Hu LM. Mechanism of the hardening process for a hydroxyapatite cement. J Biomed Mater Res A 35(1):75-80. 1997.
157. Rabinovitch A, Suarez-Pinzon WL, Strynadka K, Lakey JR, Rajotte RV. Human pancreatic islet beta-cell destruction by cytokines involves oxygen free radicals and aldehyde production. J Clin Endocrinol Metab 81(9):3197-3202, 1996.
158. Sigrist S, Ebel N, Langlois A, Bosco D, Toso C, Kleiss C, Mandes K, Berney T, Pinget M, Belcourt A, Kessler L. Role of chemokine signaling pathways in pancreatic islet rejection during allo- and xenotransplantation. Transplant Proc 37(8):3516-3518, 2005.
159. de Vos P, de Haan B, Pater J, Van Schilfgaarde R. Association between capsule diameter, adequacy of encapsulation and survival of microencapsulated rat islet allograft. Transplantation 62(7):893-899, 1996.
160. Barshes NR, Wyllie S, Goss JA. Inflammation-mediated dysfunction and apoptosis in pancreatic islet transplantation: implications for intrahepatic grafts. J Leukoc Biol 77(5):587-597, 2005.
161. Matsuda T, Omori K, Vuong T, Pascual M, Valiente L, Ferreri K, Todorov I, Kuroda Y, Smith CV, Kandeel F, Mullen Y. Inhibition of p38 pathway suppresses human islet production of pro-inflammatory cytokines and improves islet graft function. Am J Transplant 5(3):484-493, 2005.
162. Kessler L, Jesser C, Lombard Y, Karsten V, Belcourt A, Pinget M, Poindron P. Cytotoxicity of peritoneal murine macrophages against encapsulated pancreatic rat islets: in vivo and in vitro studies. J Leukoc Biol 60(6):729-736, 1996.
163. Arnush M, Heitmeier MR, Scarim AL, Marino MH, Manning PT, Corbett JA. IL-1 produced and released endogenously within human islets inhibits beta cell function. J Clin Invest 102(3):516-526, 1998.
164. Orive G, Hernández RM, Rodríguez GA, Calafiore R, Chang TM, de Vos P, Hortelano G, Hunkeler D, Lacík I, Pedraz JL. History, challenges and perspectives of cell microencapsulation. Trends Biotechnol 22(2):87-92, 2004.
165. Iwata H, Morikawa N, Fujii T, Takagi T, Samejima T, Ikada Y. Dose immunoisolation need to prevent the passage of antibodies and complements? Transplant Proc 27:3224-3226, 1995.
166. Hu WJ, Eaton JW, Ugarova TP, Tang L. Molecular basis of biomaterial-mediated foreign body reactions. Blood 98(4):1231-1238, 2001.
167. Luttikhuizen DT, Harmsen MC, Van Luyn MJ. Cellular and molecular dynamics in the foreign body reaction. Tissue Eng 12(7):1955-1970, 2006.
168. de Groot M, Schuurs TA, Leuvenink HG, van Schilfgaarde R. Macrophage overgrowth affects neighboring nonovergrown encapsulated islets. J Surg Res 115: 235-241, 2003.
169. de Vos P, Vegter D, de Haan BJ, Strubbe JH, Bruggink JE, van Schilfgaarde R. Kinetics of intraperitoneally infused insulin in rats. Functional implications for the bioartificial pancreas. Diabetes 45:1102-1107, 1996.
170. Miyamoto Y, Ishikawa K, Fukao H, Sawada M, Nagayama M, Kon M, Asaoka K. In vivo setting behaviour of fast-setting calcium phosphate cement. Biomaterials 16(11):855-860, 1995.
171. Uchizono Y, Alarcón C, Wicksteed BL, Marsh BJ, Rhodes CJ. The balance between proinsulin biosynthesis and insulin secretion: where can imbalance lead? Diabetes Obes Metab 9(S2): 56-66, 2007.
172. Wennberg L, Sundberg B, Ekdahl-Nilsson K, Korsgren O. C-peptide determinations in islet xenotransplantation: A study in the pig-to-mouse model. Cell Transplant 2001; 10(2): 165-173.
173. Harrison JS, Rameshwar P, Chang V, Bandari P. Oxygen saturation in the bone marrow of healthy volunteers. Blood 99(1): 394, 2002.
174. Robertson RP. Consequences on beta-cell function and reserve after long-term pancreas transplantation. Diabetes 53(3): 633-644, 2004.
175. Davidson G. Providing care for diabetic veterinary patients. Int J Pharm Com 4(5):386-389, 2000.
176. Lutz AT, Rand JS. Pathogenesis of feline diabetes mellitus. Vet Clin of North Am: Small Animal Practice 25(3): 527-531, 1995.
177. Takada J, Machado MA, Peres SB, Brito LC, Borges-Silva CN, Costa CE, Fonseca-Alaniz MH, Andreotti S, Lima FB. Neonatal streptozotocin-induced diabetes mellitus: a model of insulin resistance associated with loss of adipose mass. Metabolism 56(7): 977-984, 2007.
178. Montgomery TM, Nelson RW, Feldman EC, Robertson K, Polonsky KS. Basal and glucagon-stimulated plasma C-peptide concentrations in healthy dogs, dogs with diabetes mellitus, and dogs with hyperadrenocorticism. J Vet Intern Med 10(3):116-122, 1997.
179. Palmer JP, Fleming GA, Greenbaum CJ, Herold KC, Jansa LD, Kolb H, Lachin JM, Polonsky KS, Pozzilli P, Skyler JS, Steffes MW. C-peptide is the appropriate outcome measure for type 1 diabetes clinical trials to preserve beta-cell function: report of an ADA workshop. Diabetes 53:250-264, 2004.
180. Bavamian S, Klee P, Britan A, Populaire C, Caille D, Ca
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43201-
dc.description.abstract胰島移植 (islet transplantation) 對於第一型糖尿病 (Type 1 diabetes) 為一良好之治療方式。然而,免疫排斥與捐贈者不足限制了胰島移植的運用。因此免疫隔離 (immunoisolation) 的概念被提出,使得我們在不使用抗免疫排斥藥物下,可利用異種胰島細胞作為移植來源,克服捐贈者不足的問題。大部分相關的研究皆利用高分子作為免疫隔離材料來包覆胰島細胞做為人工胰臟 (bioartificial pancreas, BAP),並移植於腹腔中(peritoneal cavity)。但卻很容易因為纖維組織包覆以及氧氣供給不充足,造成人工胰臟失效。因此,本實驗利用磷酸鈣鹽水泥 (calcium phosphate cement) 來取代高分子材料作為免疫隔離裝置,並將人工胰臟移植入骨髓腔中 (intramedullary cavity),我們希望新生骨組織可以長到磷酸鈣鹽水泥腔室上,來避免纖維組織包覆;同時藉由骨髓腔中高氧分壓,來克服貧氧 (hypoxia) 的問題,以增長人工胰臟之效期。本研究的目的為探討磷酸鈣鹽水泥作為免疫材料在人工胰臟運用之可能性,以及評估骨髓腔作為人工胰臟移植處之可行性。
首先製備四鈣磷酸鹽 (tetracalcium phosphate),並以等莫爾比 (equimolar) 混合雙鈣磷酸鹽 (dicalcium phosphate) 來建造磷酸鈣鹽水泥腔室 (chamber),並利用X光繞射儀 (X-ray diffraction)、掃描式電子顯微鏡 (scanning electron microscope) 以及水銀孔洞分析儀 (mercury intrusion porosimetry) 來分析磷酸鹽水泥,其分子穿透性質 (molecular weight cut-off) 以及材料毒性 (cytotoxicity) 也進行評估。結果顯示磷酸鈣鹽水泥具有良好生物相容性,其微結構符合免疫隔離裝置之要求,並可阻斷分子量大於12.4千道爾頓 (kDa) 分子之穿透。
接著,胰島瘤細胞株 (insulinoma) 被選擇作為細胞來源,包覆在瓊脂 (agarose) 中成為微包埋球 (microenspheres)。含有胰島細胞之微包埋球被填入磷酸鈣鹽水泥腔室中,創造出一新型人工胰臟。此人工胰臟在體外 (in vitro) 以胰島素分泌、細胞活性、細胞存活以及細胞激素 (cytokine) 毒性試驗來評估,並植入糖尿病大鼠體內作初步的體內 (in vivo) 試驗。非禁食血糖以及血清胰島素濃度則在術前、術後測定,並且在實驗後將植入之人工胰臟從大鼠體中取出進行分析。結果顯示,即使培養在含有細胞激素之培養液,人工胰臟內之胰島瘤細胞仍保有正常活性、存活率以及胰島素分泌。糖尿病大鼠在腹腔內移植人工胰臟四天後,非禁食血糖由460±50下降至132±43 mg/dl,並維持在正常血糖達22天。其血清胰島素濃度在術後由0.34±0.11上升至1.43±0.30 μg/dl。組織切片顯示,纖維組織包覆以及免疫相關細胞競爭氧氣可能為造成人工胰臟失效之主因。
接著,本人工胰臟移植入糖尿病犬之骨髓腔中,並定期測量術前、術後血糖值。血液樣本則收集以利分析C-peptide濃度,犬隻生理狀況同時觀察記錄,在實驗結束後並取出人工胰臟作分析。另一隻自發性糖尿病貓也接受本人工胰臟之植入。結果顯示,糖尿病犬其血糖值在術後一天由424±23下降至243±33 mg/dl,並維持在219-349 mg/dl達12週。術後血清C-peptide濃度則由5.3±2.8上升至105.7±19.4 pmol/l。犬隻餐後血糖下降速率也增快。組織切片則顯示,骨組織與植入之人工胰臟表面建結,中間並無纖維組織產生。免疫染色顯示,人工胰臟內的胰島瘤細胞株持續分泌胰島素。關於糖尿病貓,兩小時葡萄糖曲線之峰點 (peak point of two hours glucose curve) 在術後由398下降至165-290 mg/dl。外源性胰島素之效率也由2小時延長到10-14小時,糖尿病貓之體重以及生理狀況皆改善。
本實驗證明了磷酸鈣鹽水泥腔室作為免疫隔離材料之可能性,同時證明了骨髓腔做為人工胰臟移植處之可行性,並論證了此一策略可避免纖維組織包覆以及貧氧導致的人工胰臟失效。將來,利用正常胰島來取代胰島瘤細胞株,並增加植入之人工胰臟數量,應可達到胰島素獨立 (insulin independent),並可提供第一型糖尿病病患一嶄新的治療方式。
zh_TW
dc.description.abstractImmune rejection and insufficient donor supply are the restrictions of islet transplantation for type 1 diabetes (T1D). A strategy so called as immunoisolation was purposed to facilitate the use of xenogeneic cell sources to resolve the issue of an insufficient donor supply in the absence of immunosuppression. Most studies utilized polymeric materials as an immunoisolative material to encapsulate islets as a bioartificial pancreas (BAP) and implanted in the peritoneal cavity. However, BAPs would be dysfunctional because of the fibrous tissue overgrowth and an insufficient oxygen supply. Accordingly, a calcium phosphate cement (CPC) chamber was utilized to replace the polymeric material as an immunoisolative device. BAPs were implanted in the intramedullary cavity instead of the peritoneal cavity. We hope the newborn bone tissues can grow on the CPC chamber to avoid the development of fibrous tissue. In the meantime, the sufficient partial oxygen pressure in the intramedullary cavity can overcome the issue of hypoxia. The purpose of this study was as to evaluate the feasibility of the use of a CPC chamber as an immunoisolative device, and to demonstrate the possibility of intramedullary cavity as an implanted site for BAPs.
Tetracalcium phosphate was first prepared and mixed with dicalcium phosphate in equimolar to fabricate a CPC chamber. The CPC chamber was analyzed by X-ray diffraction, scanning electron microscope and mercury intrusion porosimetry. The molecular weight cut-off (MWCO) and material-mediated cytotoxicity of CPC chamber were also evaluated. Results showed that the CPC chamber was non-cytotoxicity to insulinoma cells. The microstructure of CPC chamber satisfied the requirements of an immunoisolative device with the MWCO of 12.4 kDa, which can totally cut-off the diffusion of immune stimulatory molecules.
Next, an insulinoma cell line was applied as a cell source and encapsulated in agarose microspheres. Insulinoma/agarose microspheres were enclosed in a preformed CPC chamber to create a BAP. BAPs were evaluated in vitro by insulin secretion, cell viability, live/dead cell ratio, cytokine-mediated cytotoxicity assay, and implanted in the peritoneal cavity of diabetic rats as preliminary in vivo study. Non-fasting blood glucose level (NFBG) and serum insulin level were analyzed perioperatively; BAPs were also retrieved for histological examination. Results showed insulinoma cells enclosed in the CPC chamber had normal viability, survival and insulin secretion even when cultured in media with cytokines. The NFBG of rats was decreased from 460±50 to 132±43 mg/dl four day post-operation and maintained in euglycemia for 22 days; serum insulin level was increased from 0.34±0.11 to 1.43±0.30 μg/dl post-operation. Histological examination revealed the fibrous tissues overgrowth and immune related cells competed for oxygen resulting in hypoxia could be attributed to the dysfunction of BAPs.
BAPs were then implanted in the femoral intramedullary cavity of diabetic canines. Pre- and postprandial blood glucose level was monitored perioperatively. Blood samples were collected for the analysis of C-peptide level and physiological conditions were observed at pre-determined intervals. BAPs were retrieved 12 weeks post-operation for histological examinations. A spontaneous diabetic feline was also received the BAPs implantation. Results showed the preprandial blood glucose level of diabetic canines was decreased from 424±23 to 243±33 mg/dl one day post-operation and maintained in the range of 219-349 mg/dl for 12 weeks. Serum C-peptide level was increased from 5.3±2.8 to 105.7±19.4 pmol/l. The decreasing rate of postprandial blood glucose was accelerated. Histological examinations revealed recipients’ bone tissues binding to the surfaces of BAPs directly; there was no fibrous tissue development. Immunohistochemical stain showed positive insulin staining for the enclosed insulinoma cells. For the diabetic feline, the peak point of two hours glucose curve was decreased from 398 to 165-290 mg/dl post-operation; the effectiveness of exogenous insulin was extended from 2 to 10-14 hrs and the physiological conditions were improved.
This study proves the feasibility of using a CPC chamber as an immunoisolative device. The possibility of intramedullary cavity as an implanted site for BAPs had also been proved. BAPs implanted into the intramedullary cavity can avoid the problems of fibrous tissue outgrowth and hypoxia. The use of native islets to replace the insulinoma cells and to increase the number of implanted BAPs or the islet cells density within BAPs should be considered to achieve insulin independent, and may provide a new treatment for T1D in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:42:18Z (GMT). No. of bitstreams: 1
ntu-98-F93548034-1.pdf: 4430363 bytes, checksum: ec74c5a44dc70ef63374fea7cdd6f8ec (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsChapter 1 Introduction
1.1 Pancreas……………………………………………………………1
1.2 Glucose Stimulation and Insulin Secretion…………………3
1.3 Mechanism of Insulin Action……………………………………6
1.4 Diabetes Mellitus…………………………………………………7
1.4.1 Type I Diabetes (T1D)…………………………………………8
1.4.2 Type II Diabetes (T2D)………………………………………8
1.5 Treatments for Type I Diabetes………………………………9
1.5.1 Insulin Administration………………………………………9
1.5.2 Insulin Pump Therapy…………………………………………9
1.5.3 Pancreas Transplantation……………………………………10
1.5.4 Islet Transplantation………………………………………11
1.6 Xenogeneic Islet Transplantation……………………………16
Chapter 2 Theoretical Basis
2.1 Tissue Engineering and Bioartificial Pancreas…………18
2.2 Immunoisolation…………………………………………………21
2.3 Current Designs for Bioartificial Pancreas………………23
2.3.1 Micro- and Macroencapsulation……………………………23
2.3.2 Semi-permeable Membrane……………………………………26
2.3.3 Diffusion Chamber……………………………………………27
2.3.4 Hydrogel…………………………………………………………28
2.4 Critical Factors for Bioartificial Pancreas……………31
2.4.1 Cell Source: Xenogeneic Islets……………………………31
2.4.2 Immunoisolative Material: Calcium Phosphate Cement…32
2.4.3 Implanted Site: Intramedullary Cavity…………………33
2.5 The Purpose of Study……………………………………………34
Chapter 3 Materials and Methods
3.1 Evaluations of Calcium Phosphate Cement Chamber as An Immunoisolative Device………………………………………………36
3.1.1 Preparation of Calcium Phosphate Cement Chamber……36
3.1.1.1 Preparation of Tetra-calcium Phosphate Powder……36
3.1.1.2 Preparation of Calcium Phosphate Cement Chamber…37
3.1.2 Analysis of Calcium Phosphate Cement Chamber…………37
3.1.2.1 X-Ray Diffraction…………………………………………37
3.1.2.2 Scanning Electron Microscope……………………………37
3.1.2.3 Mercury Intrusion Porosimetry…………………………37
3.1.2.4 Molecular Weight Cut-Off…………………………………38
3.1.3 Cytotoxicity evaluations for Calcium Phosphate Cement Chamber…………………………………………………………………39
3.1.3.1 Culture of RIN-m5F Insulinoma Cells…………………39
3.1.3.2 Thiazolyl Blue Tetrazolium Bromide (MTT) Assay……39
3.1.3.3 Lactate Dehydrogenase (LDH) Assay……………………40
3.1.3.4 β-Galactosidase Assay……………………………………41
3.1.3.5 Insulin Secretion…………………………………………41
3.2 Calcium Phosphate Cement Chamber as An Immunoisolative Device for A Bioartificial Pancreas: An In Vitro Study……42
3.2.1 Culture of NIT-1 Insulinoma Cells………………………42
3.2.2 Cell Microencapsulation……………………………………42
3.2.3 Preparation of Bioartificial Pancreas…………………43
3.2.4 Evaluations of Bioartificial Pancreas…………………44
3.2.4.1 Insulin Secretion…………………………………………44
3.2.4.2 Cell Viability Assay………………………………………44
3.2.4.3 Live-Dead Stain for Cell Survival……………………45
3.2.4.4 Cytokine-Mediated Cytotoxicity Assay…………………46
3.3 In Vivo Study in Streptozotocin-Induced Diabetic Rats46
3.3.1 Establishment of Diabetic Rat Model……………………47
3.3.2 Bioartificial Pancreas Implantation……………………47
3.3.3 Clinical Evaluations…………………………………………48
3.3.4 Implants Retrieve and Histological Examination………49
3.4 In Vivo Study in Alloxan-Induced Diabetic Canines……49
3.4.1 Establishment of Diabetic Canine Model…………………50
3.4.2 Bioartificial Pancreas Implantation……………………50
3.4.3 Daily Management and Clinical Assessments……………52
3.4.4 Implants Retrieve and Histological Examination………52
3.5 In Vivo Study in A Spontaneous Diabetic Feline…………53
3.5.1 The Spontaneous Diabetic Feline…………………………53
3.5.2 Bioartificial Pancreas Implantation……………………54
3.5.3 Daily Management and Clinical Assessments……………55
3.6 Statistical Analysis……………………………………………55
Chapter 4 Results
4.1 Evaluations of Calcium Phosphate Cement Chamber as An Immunoisolative Device………………………………………………56
4.1.1 Analysis of Calcium Phosphate Cement Chamber…………56
4.1.1.1 CPC Chamber and XRD Analyses……………………………56
4.1.1.2 Scanning Electron Microscope……………………………57
4.1.1.3 Mercury Intrusion Porosimetry…………………………58
4.1.1.4 Molecular Weight Cut-Off…………………………………58
4.1.2 Cytotoxicity Evaluations for Calcium Phosphate Cement Chamber…………………………………………………………………59
4.1.2.1 Thiazolyl Blue Tetrazolium Bromide (MTT) Assay……59
4.1.2.2 Lactate Dehydrogenase (LDH) Assay……………………60
4.1.2.3 β-Galactosidase Assay……………………………………61
4.1.2.4 Insulin Secretion…………………………………………62
4.2 Calcium Phosphate Cement Chamber as An Immunoisolative Device for A Bioartificial Pancreas: An In Vitro Study……63
4.2.1 Cell Microencapsulation……………………………………63
4.2.2 Evaluations of Bioartificial Pancreas…………………64
4.2.2.1 Insulin Secretion…………………………………………64
4.2.2.2 Cell Viability Assay………………………………………65
4.2.2.3 Live-Dead Stain for Cell Survival……………………66
4.2.2.4 Cytokine-Mediated Cytotoxicity Assay…………………68
4.3 In Vivo Study in Streptozotocin-Induced Diabetic Rats70
4.3.1 Clinical Evaluations…………………………………………70
4.3.1.1 Non-Fasting Blood Glucose Concentration……………70
4.3.1.2 Serum Insulin Level………………………………………71
4.3.2 Histological Examination……………………………………72
4.4 In Vivo Study in Alloxan-Induced Diabetic Canines……72
4.4.1 Bioartificial Pancreas Implantation……………………72
4.4.2 Clinical Evaluations…………………………………………74
4.4.2.1 Preprandial Blood Glucose Level………………………74
4.4.2.2 Serum C-Peptide……………………………………………75
4.4.2.3 Variation of Postprandial Blood Glucose Level and Decreasing Rate………………………………………………………76
4.4.2.4 Histological Examination…………………………………77
4.5 In Vivo Study in A Spontaneous Diabetic Feline…………78
4.5.1 Bioartificial Pancreas Implantation……………………78
4.5.2 Clinical Evaluations…………………………………………79
4.5.2.1 Two Hours Glucose Curve…………………………………79
4.5.2.2 Physiological Conditions…………………………………80
Chapter5 Discussion………………………………………………………………82
Chapter 6 Conclusion………………………………………………………………92
References………………………………………………………………93
Curriculum vitae……………………………………………………111
dc.language.isoen
dc.subject磷酸鈣鹽水泥zh_TW
dc.subject異種移植zh_TW
dc.subject免疫隔離zh_TW
dc.subject人工胰臟zh_TW
dc.subject第一型糖尿病zh_TW
dc.subjectType 1 diabetesen
dc.subjectCalcium phosphate cement.en
dc.subjectBioartificial pancreasen
dc.subjectImmunoisolationen
dc.subjectXenotransplantationen
dc.title磷酸鈣鹽水泥腔室作為免疫隔離裝置在人工胰臟之運用zh_TW
dc.titleCalcium Phosphate Cement Chamber as Immunoisolative Device for Bioartificial Pancreasen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee郭宗甫,李宣書,角昭一郎,吳信志,楊卿堯,沙達文,莎薇塔
dc.subject.keyword第一型糖尿病,異種移植,免疫隔離,人工胰臟,磷酸鈣鹽水泥,zh_TW
dc.subject.keywordType 1 diabetes,Xenotransplantation,Immunoisolation,Bioartificial pancreas,Calcium phosphate cement.,en
dc.relation.page114
dc.rights.note有償授權
dc.date.accepted2009-07-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
4.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved