請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43198完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 方偉宏 | |
| dc.contributor.author | Yung-Hsu Yu | en |
| dc.contributor.author | 尤詠絮 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:42:08Z | - |
| dc.date.available | 2011-09-15 | |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-14 | |
| dc.identifier.citation | Constantin, N., L. Dzantiev, et al. (2005). 'Human Mismatch Repair: RECONSTITUTION OF A NICK-DIRECTED BIDIRECTIONAL REACTION.' J. Biol. Chem. 280: 39752-39761.
Dalhus, B., A. S. Arvai, I. Rosnes, O. E. Olsen, P. H. Backe, I. Alseth, H. Gao, W. Cao, J. A. Tainer & M. Bjoras, (2009) Structures of endonuclease V with DNA reveal initiation of deaminated adenine repair. Nat Struct Mol Biol 16: 138-143. Errol C.F, Graham C.W., Wolfram S. (1995) DNA REPAIR AND MUTAGENESIS. Fang, W., J. Y. Wu, et al. (1997). 'Methyl-directed repair of mismatched small heterologous sequences in cell extracts from Escherichia coli.' J Biol Chem 272: 22714-20. Fang, W. H., B. J. Wang, et al. (2003). 'DNA loop repair by Escherichia coli cell extracts.' J Biol Chem 278: 22446-52. Feng, H., L. Dong, et al. (2005). 'Defining amino acid residues involved in DNA-protein interactions and revelation of 3'-exonuclease activity in endonuclease V.' Biochemistry 44: 11486-95. Gros, L., M. K. Saparbaev, et al. (2002). 'Enzymology of the repair of free radicals-induced DNA damage.' Oncogene 21: 8905-25. Hitchcock, T. M., H. Gao, et al. (2004). 'Cleavage of deoxyoxanosine-containing oligodeoxyribonucleotides by bacterial endonuclease V.' Nucleic Acids Res 32: 4071-80. Hu, W., Z. Feng, et al. (2004). 'Nickel (II) enhances benzo[a]pyrene diol epoxide-induced mutagenesis through inhibition of nucleotide excision repair in human cells: a possible mechanism for nickel (II)-induced carcinogenesis.' Carcinogenesis 25: 455-62. Huang, J., J. Lu, et al. (2001). 'Multiple cleavage activities of endonuclease V from Thermotoga maritima: recognition and strand nicking mechanism.' Biochemistry 40: 8738-48. Kreklau, E. L., M. Limp-Foster, et al. (2001). 'A novel fluorometric oligonucleotide assay to measure O( 6)-methylguanine DNA methyltransferase, methylpurine DNA glycosylase, 8-oxoguanine DNA glycosylase and abasic endonuclease activities: DNA repair status in human breast carcinoma cells overexpressing methylpurine DNA glycosylase.' Nucleic Acids Res 29: 2558-66. Lindahl, T. (1993). 'Instability and decay of the primary structure of DNA.' Nature 362: 709-15. Lindahl, T. and R. D. Wood (1999). 'Quality control by DNA repair.' Science 286: 1897-905. Lu, A.L., Clark, S., and Modrich, P. (1983) Methyl-directed repair of DNA base-pair mismatches in vitro. Proc Natl Acad Sci USA 80: 4639-4643. Lu, A. L., J. J. Tsai-Wu & J. Cillo, (1995) DNA determinants and substrate specificities of Escherichia coli MutY. J Biol Chem 270: 23582-23588. Memisoglu, A. and L. Samson (2000). 'Base excision repair in yeast and mammals.' Mutat Res 451: 39-51. Moe, A., J. Ringvoll, et al. (2003). 'Incision at hypoxanthine residues in DNA by a mammalian homologue of the Escherichia coli antimutator enzyme endonuclease V.' Nucleic Acids Res 31: 3893-900. Mourgues, S., M. E. Lomax, et al. (2007). 'Base excision repair processing of abasic site/single-strand break lesions within clustered damage sites associated with XRCC1 deficiency.' Nucleic Acids Res 35: 7676-87. O'Brien, P. J. and T. Ellenberger (2004). 'The Escherichia coli 3-methyladenine DNA glycosylase AlkA has a remarkably versatile active site.' J Biol Chem 279: 26876-84. Riazuddin, S. and T. Lindahl (1978). 'Properties of 3-methyladenine-DNA glycosylase from Escherichia coli.' Biochemistry 17: 2110-8. Schekman, R., A. Weiner, et al. (1974). 'Multienzyme systems of DNA replication.' Science 186: 987-93. Tchou, J., H. Kasai, et al. (1991). '8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity.' Proc Natl Acad Sci U S A 88: 4690-4. Weiss, B. (2008). 'Removal of deoxyinosine from the Escherichia coli chromosome as studied by oligonucleotide transformation.' DNA Repair (Amst) 7: 205-12. Yao, M., Z. Hatahet, et al. (1994). 'Purification and characterization of a novel deoxyinosine-specific enzyme, deoxyinosine 3' endonuclease, from Escherichia coli.' J Biol Chem 269: 16260-8. Yao, M. and Y. W. Kow (1995). 'Interaction of deoxyinosine 3'-endonuclease from Escherichia coli with DNA containing deoxyinosine.' J Biol Chem 270: 28609-16. Yao, M. & Y. W. Kow, (1996) Cleavage of insertion/deletion mismatches, flap and pseudo-Y DNA structures by deoxyinosine 3'-endonuclease from Escherichia coli. J Biol Chem 271: 30672-30676. Yao, M., and Kow, Y.W. (1997) Further Characterization of Escherichia coli Endonuclease V. J Biol Chem 49:30774-30779. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43198 | - |
| dc.description.abstract | Deoxyinosine (hypoxanthine deoxyribonucleoside) in DNA is produced by the hydrolytic or nitrosative deamination of deoxyadenosine. Hypoxanthine pairs with cytosine during replication resulting in A:T to G:C transition mutation if it is not repaired. Deoxyinosine (dI) is excised in a repair pathway that is initiated by endonuclease V (endo V), the nfi gene product, in Escherichia coli. This enzyme cleaves the second phosphodiester bond 3' to the deoxyinosine. It is suggested that DNA polymerase I and DNA ligase participate in the repair of deoxyinosine but the complete mechanism of deoxyinosine excision after endo V cleavage is not known. We constructed an dI:dG mispair heteroduplex substrate which dI is designed in the XhoI restriction enzyme site. It can be digested by XhoI if dI:dG is repaired to dG:dC. If not, it cannot be recognized by XhoI. We can determine the repair level by evaluating the digested products.
Our results showed the repair levels of the dI:dG substrate were not significantly different between mismatch proficient NM522 extracts and mismatch repair-deficient extracts (GM2931, RK1517). We concluded that the involvement of MutHLS pathway in our assay system is insignificant. Furthermore, the repair level of AlkA extracts was similar with that observed in NM522 extracts. Repair of dI heterology was highly dependent on the presence of the nfi gene product in crude extracts. The repair level in endo V deficient extracts decreased to less than 50% of that of endo V-proficient extracts. We also tested the requirement for endo V-mediated repair in E.coli extracts. Mg2+ is indispensable in the repair of dI and addition of exogenous ATP or 4 dNTPs was not required. We also performed the repair reaction with three purified enzymes:endonuclease V, DNA polymerase I, and E. coli DNA ligase. To our surprise, without any additional component from cell extracts, these three enzymes alone were sufficient to reconstitute the repair in vitro. We also replaced DNA polymerase I with klenow fragment 3’→5’ exo- in the reconstitution reaction and found the dI heterology cannot be repaired. This observation clearly demonstrated that 3’→5’ exonuclease activity of DNA polymerase I is essential for the endo V-mediated excision repair assay. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:42:08Z (GMT). No. of bitstreams: 1 ntu-98-R96424027-1.pdf: 1924698 bytes, checksum: 60bc230f0624fb7d01bc8e0efe1733c1 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 總目次 I
圖目次 III 中文摘要 1 英文摘要 3 縮寫表 4 前言 6 材料與方法 10 一、菌株 10 二、大腸桿菌細胞萃取物之製備 10 三、突變噬菌體M13mp18 mutant之建構 11 四、M13mp18系列雙股核酸之製備 12 五、M13mp18系列單股核酸之製備 13 六、具亞黃嘌呤核酸鹼基之異雙股核酸之製備 13 七、異雙股核酸對測定用限制酵素之敏感度分析 15 八、試管中之修復反應與結果分析 15 九、DNA polymerase I(E.coli)與klenow fragment(3'→ 5'exonuclease-)之gap filling能力測試 16 十、利用純化的蛋白質觀察含亞黃嘌呤的環狀異雙股核酸之修復情形 17 十一、利用純化的蛋白質觀察直線型異雙股核酸之修復情形 17 結果 19 一、異雙股核酸對分析用限制酵素之敏感度分析 19 二、試管中異雙股核酸之修復反應分析 20 (1) 反應時間與修復程度之關係 20 (2) 含dI受質於MMR蛋白缺失之大腸桿菌細胞萃取液中之修復情形 20 (3) 含dI受質於野生型、endonuclease V及AlkA蛋白缺失之大腸桿菌細胞萃取液中之修復情形 20 (4) 缺乏Mg2+、ATP、dNTPs及加入ATP-γ-S對修復反應之影響 21 三、DNA polymerase I與klenow fragment(3'→ 5' exonuclease-)之gap filling能力測試 21 四、利用純化的蛋白質觀察含亞黃嘌呤的環狀異雙股核酸之修復情形 22 五、利用純化的蛋白質觀察直線型異雙股核酸之修復情形 23 討論 24 圖 26 參考文獻 41 | |
| dc.language.iso | zh-TW | |
| dc.subject | 修復 | zh_TW |
| dc.subject | 亞黃嘌呤 | zh_TW |
| dc.subject | AER | en |
| dc.subject | hypoxanthine | en |
| dc.subject | deoxyinosine | en |
| dc.subject | BER | en |
| dc.title | 亞黃嘌呤核酸鹼基切除修復試管中測定系統之研發 | zh_TW |
| dc.title | Development of a New Method for Base Excision Repair of Deoxyinosine in vitro | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡芷季,許濤,楊雅倩,高照村 | |
| dc.subject.keyword | 亞黃嘌呤,修復, | zh_TW |
| dc.subject.keyword | hypoxanthine,deoxyinosine,BER,AER, | en |
| dc.relation.page | 43 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-14 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
