請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43177完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林文澧(Win-Li Lin) | |
| dc.contributor.author | Yung-Shin Lee | en |
| dc.contributor.author | 李咏馨 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:40:59Z | - |
| dc.date.available | 2014-07-16 | |
| dc.date.copyright | 2009-07-16 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-14 | |
| dc.identifier.citation | [1] W. M. Pardridge, 'Blood-brain barrier drug targeting: the future of brain drug development,' Mol Interv, vol. 3, pp. 90-105, 51, Mar 2003.
[2] C. E. Krewson, M. L. Klarman, and W. M. Saltzman, 'Distribution of nerve growth factor following direct delivery to brain interstitium,' Brain Res, vol. 680, pp. 196-206, May 22 1995. [3] S. I. Rapoport, 'Osmotic opening of the blood-brain barrier: principles, mechanism, and therapeutic applications,' Cell Mol Neurobiol, vol. 20, pp. 217-30, Apr 2000. [4] K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, 'Non-invasive opening of BBB by focused ultrasound,' Acta Neurochir Suppl, vol. 86, pp. 555-8, 2003. [5] M. Kinoshita, N. McDannold, F. A. Jolesz, and K. Hynynen, 'Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption,' Proc Natl Acad Sci U S A, vol. 103, pp. 11719-23, Aug 1 2006. [6] D. Dalecki, 'Mechanical bioeffects of ultrasound,' Annu Rev Biomed Eng, vol. 6, pp. 229-48, 2004. [7] L. H. Treat, N. McDannold, N. Vykhodtseva, Y. Zhang, K. Tam, and K. Hynynen, 'Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound,' Int J Cancer, vol. 121, pp. 901-7, Aug 15 2007. [8] W. D. O'Brien, Jr., 'Ultrasound-biophysics mechanisms,' Prog Biophys Mol Biol, vol. 93, pp. 212-55, Jan-Apr 2007. [9] C. M. Tempany, E. A. Stewart, N. McDannold, B. J. Quade, F. A. Jolesz, and K. Hynynen, 'MR imaging-guided focused ultrasound surgery of uterine leiomyomas: a feasibility study,' Radiology, vol. 226, pp. 897-905, Mar 2003. [10] T. M. Allen, 'Liposomes. Opportunities in drug delivery,' Drugs, vol. 54 Suppl 4, pp. 8-14, 1997. [11] S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S. K. Libutti, K. C. Li, and B. J. Wood, 'Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect,' Clin Cancer Res, vol. 13, pp. 2722-7, May 1 2007. [12] G. Kong, R. D. Braun, and M. W. Dewhirst, 'Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature,' Cancer Res, vol. 61, pp. 3027-32, Apr 1 2001. [13] R. E. Apfel, 'Acoustic cavitation: a possible consequence of biomedical uses of ultrasound,' Br J Cancer Suppl, vol. 5, pp. 140-6, Mar 1982. [14] H. G. Flynn and C. C. Church, 'Erratum: transient pulsations of small gas bubbles in water [J. Acoust. Soc. Am. 84, 985-998 (1988)] [corrected and republished],' J Acoust Soc Am, vol. 84, pp. 1863-76, Nov 1988. [15] R. E. Apfel and C. K. Holland, 'Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound,' Ultrasound Med Biol, vol. 17, pp. 179-85, 1991. [16] N. McDannold, N. Vykhodtseva, and K. Hynynen, 'Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index,' Ultrasound Med Biol, vol. 34, pp. 834-40, May 2008. [17] N. McDannold, N. Vykhodtseva, F. A. Jolesz, and K. Hynynen, 'MRI investigation of the threshold for thermally induced blood-brain barrier disruption and brain tissue damage in the rabbit brain,' Magn Reson Med, vol. 51, pp. 913-23, May 2004. [18] P. Dayton, A. Klibanov, G. Brandenburger, and K. Ferrara, 'Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles,' Ultrasound Med Biol, vol. 25, pp. 1195-201, Oct 1999. [19] K. Hynynen, N. McDannold, N. Vykhodtseva, S. Raymond, R. Weissleder, F. A. Jolesz, and N. Sheikov, 'Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery,' J Neurosurg, vol. 105, pp. 445-54, Sep 2006. [20] K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, 'Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits,' Radiology, vol. 220, pp. 640-6, Sep 2001. [21] N. I. Vykhodtseva, K. Hynynen, and C. Damianou, 'Histologic effects of high intensity pulsed ultrasound exposure with subharmonic emission in rabbit brain in vivo,' Ultrasound Med Biol, vol. 21, pp. 969-79, 1995. [22] B. E. O'Neill, H. Vo, M. Angstadt, K. P. Li, T. Quinn, and V. Frenkel, 'Pulsed high intensity focused ultrasound mediated nanoparticle delivery: mechanisms and efficacy in murine muscle,' Ultrasound Med Biol, vol. 35, pp. 416-24, Mar 2009. [23] F. Y. Yang, W. M. Fu, W. S. Chen, W. L. Yeh, and W. L. Lin, 'Quantitative evaluation of the use of microbubbles with transcranial focused ultrasound on blood-brain-barrier disruption,' Ultrason Sonochem, vol. 15, pp. 636-43, Apr 2008. [24] F. Y. Yang, W. M. Fu, R. S. Yang, H. C. Liou, K. H. Kang, and W. L. Lin, 'Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption,' Ultrasound Med Biol, vol. 33, pp. 1421-7, Sep 2007. [25] J. F. Deeken and W. Loscher, 'The Blood-Brain Barrier and Cancer: Transporters, Treatment, and Trojan Horses,' Clin Cancer Res, vol. 13, pp. 1663-1674, March 15, 2007 2007. [26] T. N. Nagaraja, K. A. Keenan, J. D. Fenstermacher, and R. A. Knight, 'Acute leakage patterns of fluorescent plasma flow markers after transient focal cerebral ischemia suggest large openings in blood-brain barrier,' Microcirculation, vol. 15, pp. 1-14, Jan 2008. [27] N. McDannold, N. Vykhodtseva, and K. Hynynen, 'Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption,' Ultrasound Med Biol, vol. 34, pp. 930-7, Jun 2008. [28] L. Angelov, N. D. Doolittle, D. F. Kraemer, T. Siegal, G. H. Barnett, D. M. Peereboom, G. Stevens, J. McGregor, K. Jahnke, C. A. Lacy, N. A. Hedrick, E. Shalom, S. Ference, S. Bell, L. Sorenson, R. M. Tyson, M. Haluska, and E. A. Neuwelt, 'Blood-Brain Barrier Disruption and Intra-Arterial Methotrexate-Based Therapy for Newly Diagnosed Primary CNS Lymphoma: A Multi-Institutional Experience,' J Clin Oncol, May 18 2009. [29] R. A. Kroll and E. A. Neuwelt, 'Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means,' Neurosurgery, vol. 42, pp. 1083-99; discussion 1099-100, May 1998. [30] J. Cummings and C. S. McArdle, 'Studies on the in vivo disposition of adriamycin in human tumours which exhibit different responses to the drug,' Br J Cancer, vol. 53, pp. 835-8, Jun 1986. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43177 | - |
| dc.description.abstract | 根據過去研究指出,利用聚焦式超音波結合超音波顯影劑可以非侵入地開啟特定區域的血腦屏障,達到增加藥物輸送的效果。本研究探討以頻率為1MHz的聚焦型超音波配合超音波顯影劑局部開啟血腦屏障後,在相同位置加入第二次的超音波震盪,其強化Evans Blue (EB)和Self-assemble Iron Oxide Nanocarriers (about 60 nm)輸送的影響。
本研究使用平均380克重的大鼠來進行實驗。將1MHz的聚焦式超音波探頭置於僅經剃毛後的大鼠頭上,參數設定為1Hz重複頻率,50 ms脈衝長度,每次震盪持續時間為60s; 超音波顯影劑劑量為200μl/kg; 壓力場分佈狀態由水診器測量可得,最大值為1.2 MPa。暫時性開啟血腦屏障以及等待超音波顯影劑清除後,注射EB或iron oxide nanocarrier,並且在相同定位點加入第二次的超音波震盪。所有大鼠皆在4小時後犧牲,並將鼠腦取出,以便進行EB/nanocarrier extravasation分析。 在強化組中,Evans Blue的萃取結果為每單位重量腦組織中98.43±35.48 μg,相較於非強化組9.46±2.94 μg有明顯差異。另一方面,也觀察到經強化輸送作用後, Evans Blue和奈米粒子在目標區中的分佈範圍較廣且深。 由實驗結果得知,增加第二次超音波震盪而沒有超音波顯影劑的情況下,確實是可有效地強化Evans Blue和Self-assemble Iron Oxide Nanocarrier 在血腦屏障暫時性開啟之特定區域的滲出量。此研究結果證明,在血腦屏障開啟的有限時間內,經由上述的治療策略,有助於強化藥物輸送,達到有效治療的目的。 | zh_TW |
| dc.description.abstract | Previous studies showed that focused ultrasound (FUS) with ultrasound contrast agent (UCA) could non-invasively open blood-brain barrier of targeted region to do local drug delivery. In this study, we investigated the effects of ultrasound sonication on the delivery enhancement of Evans Blue (EB) and iron oxide nanocarriers (about 60 nm) into rat brain after the blood-brain barrier was temporarily opened by FUS with UCA. Wistar rats averaging about 380g were used in this study and the hair on their heads was removed thoroughly. After an intravenous injection of microbubbles (200μl/kg, Artison, Artison Corp., Inola, USA), 1.0 MHz focused ultrasound was immediately sonicated through the skull to the target region at 1.2 MPa pressure, 50ms burst length, 1 Hz repetition frequency, and 60s duration, to disrupt the blood-brain barrier. Ten minutes later, EB and/or iron oxide nanocarrier were injected, and then a second sonication was exposed at the same location. All rats were sacrificed about 4 hrs after the second sonication. The brains were removed and sectioned for extraction and detection of EB/nanocarrier extravasation and distribution. The results of EB extraction showed that the density of EB in the brains with a second sonication is 98.43±35.48μg/ (g of brain tissue) compared to 9.46±2.94μg/g for those without a second sonication. The spatial distributions of EB stain and fluorescent dye (Fluorescein isothiocyanate, FITC) for nanocarrier in the sonicated regions showed that a larger and much deeper region was produced for the cases with a second sonication. A second sonication without the injection of microbubbles can effectively enhance the delivery of molecules (EB) and nanoparticles (iron oxide nanocarrier) into the region with BBB temporarily disrupted. It indicated that this sonication strategy is potentially employed to improve the drug delivery within a limited duration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:40:59Z (GMT). No. of bitstreams: 1 ntu-98-R96548011-1.pdf: 2461844 bytes, checksum: ef57188b2098c1c5b60156224c72c939 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 誌謝...................................................I
中文摘要...............................................II Abstract...............................................III Contents...............................................V Figures................................................VIII Tables.................................................X Chapter 1 Introduction.................................1 1-1 Blood-Brain Barrier................................1 1-2 Delivery strategies across the BBB.................1 1-3 Focused ultrasound.................................2 1-3-1 Thermal effect...................................3 1-3-2 Acoustic pressure and cavitation effect..........3 1-3-3 Focused ultrasound with UCA for BBB disruption...4 1-3-4 FUS with pulsed wave for nano-particle delivery..5 1-4 Specific aim.......................................6 Chapter 2 Materials and methods.......................11 2-1 Animal preparation................................11 2-2 Ultrasound equipment..............................12 2-3 Sonications.......................................13 2-4 BBB disruption evaluated by Evans Blue............14 2-5 Histological analysis.............................15 2-6 Magnetic Resonance imaging........................16 2-7 Image post-processing.............................16 2-7-1 Area fraction...................................17 2-7-2 Spatial distribution (Contour map)..............17 2-8 Statistical analysis..............................18 Chapter 3 Results.....................................28 3-1 Acoustic pressure profile.........................28 3-2 BBB disruption....................................28 3-2-1 Location test...................................28 3-2-2 EB extraction from two sections in the same rat.29 3-2-3 Acoustic parameter test.........................29 3-3 Enhanced EB delivery..............................30 3-3-1 EB extraction from two sections in the same rat.30 3-3-2 Compared diffusive delivery only with enhanced drug delivery in different rats............................30 3-3-3 Area Fraction of EB Delivery....................31 3-3-4 Spatial Distribution of EB Stain................31 3-3-5 Acoustic parameter tests of enhanced sonication.32 3-4 Enhanced Self-assemble Iron Oxide Nanocarriers delivery..............................................32 3-5 Histology.........................................33 Chapter 4 Discussion..................................49 4-1 Modify surgical procedure to lower the risk of animal death.................................................49 4-2 Examine the bio-phenomenon after BBB opened.......50 4-3 Efficacy and tissue damage........................50 4-4 Acoustic parameters...............................51 4-4-1 Degree of barrier opening.......................51 4-4-2 Degree of enhanced delivery.....................51 4-5 The feasibility of BBBD chemotherapy..............52 4-6 Response evaluation...............................53 Chapter 5 Conclusion..................................55 Chapter 6 Future work.................................56 Reference.............................................57 Appendix..............................................60 | |
| dc.language.iso | en | |
| dc.subject | 奈米粒子 | zh_TW |
| dc.subject | 聚焦式超音波 | zh_TW |
| dc.subject | 超音波顯影劑 | zh_TW |
| dc.subject | 血腦屏障 | zh_TW |
| dc.subject | 強化藥物輸送 | zh_TW |
| dc.subject | nanoparrticles | en |
| dc.subject | enhanced drug delivery | en |
| dc.subject | blood-brain barrier | en |
| dc.subject | ultrasound contrast agent | en |
| dc.subject | focused ultrasound | en |
| dc.title | 非侵入式聚焦超音波結合超音波顯影劑應用於中樞神經系統藥物傳輸之強化與監控 | zh_TW |
| dc.title | Enhancement and Monitoring of Drug Delivery for CNS with Noninvasive Focused Ultrasound and Ultrasound Contrast Agent | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曾文毅,劉浩澧,符文美,王士豪 | |
| dc.subject.keyword | 聚焦式超音波,超音波顯影劑,血腦屏障,強化藥物輸送,奈米粒子, | zh_TW |
| dc.subject.keyword | focused ultrasound,ultrasound contrast agent,blood-brain barrier,enhanced drug delivery,nanoparrticles, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
