請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43176完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾雪峰(Snow H. Tseng) | |
| dc.contributor.author | Muhammad Rizki Ramadhani | en |
| dc.contributor.author | 馬富月 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:40:56Z | - |
| dc.date.available | 2009-07-20 | |
| dc.date.copyright | 2009-07-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-14 | |
| dc.identifier.citation | REFERENCES
1. A. M. Fercher, K. Mengedoth, and W. Werner, 'Eye length measurement by interferometry with partially coherent light ' Opt. letter 13, 186-188 (1988). 2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, 'Optical Coherence Tomography,' Science 254, 1178-1181 (1991). 3. G. Yao, and L. V. Wang, 'Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,' IOP Science 44, 2307-2320 (1999). 4. J. P. Partington, A Short History of Chemistry (Dover Publications, London, 1989). 5. W. H. Jurek, 'Decoherence, einselection, and the quantum origins of the classical,' Review of Modern Physics 75, 715 (2003). 6. J. G. Black, Microbiology: Principles and Explorations (John Wiley & Sons Inc., New York, 2004). 7. M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Cambridge University Press, Cambridge, 1999). 8. P. Frank, Philosophy of Science: The Link Between Science and Philosophy (Dover Publications, 2004). 9. J. Manners, Dynamic Fields and Waves (Taylor & Francis, 2000). 10. H. Bradbury, Introduction to Light Micrsocopy (Garland Science, London, 1998). 11. S. H. Yun, 'Advances in Optical coherence Tomography: Frequency-domain Technology and Applications,' in Optical Society of America(2007). 12. K. Yee, 'Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,' Antenna and Propagations, IEEE Transactions 14, 302-307 (1966). 13. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, 'Common-path interferometer for frequency-domain optical coherence tomography,' Applied Optics 42, 6 (2003). 14. A. Taflove, and S. C. Hagness, Computation Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005). 15. J. M. Schmitt, and A. Knuttel, 'Model of optical coherence tomography of heterogeneous tissue,' J. Opt. Soc. Am. A 14, 1231 (1997) 16. D. B. Davidson, Computation Electromagnetics for RF and Microwave Engineering (Cambridge University Press, Cambridge, 2005). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43176 | - |
| dc.description.abstract | 摘要
光學相干層析技術( OCT )是一種顯微鏡方法,現在已經獲得了普及。這是一個光學信號採集和處理方法,使一個非常高品質,高分辨率(微米級) ,並有能力生產三維圖像內光散射媒體得到的。華僑城被廣泛應用於醫學領域特別是在觀測的生物組織,但它也可用於光子的高精度測量。一些華僑城優點是高分辨 率和高還深穿透。 基本華僑城是干涉。我們使用低相干光作為光源。在這裡,我們嘗試診斷鑑於這是來自樣品臂的光從參考臂用的原則,邁克耳孫干涉儀。相結合的反射光從樣品臂和參考臂將產生干涉模式只有輕武器都走過了同樣優秀的光學距離。這意味著雙方將有相同的光學路徑長度。 真 正的華僑城模擬,但是,有一個限制的條件,地點和材料,目前正在觀察。為了簡化這個問題,我們嘗試以模擬10月利用有限差分時域( FDTD法)方法。這種模擬方法使我們能夠建立一個範例,我們需要的材料,並提出了假設情況,適合觀測的材料是很難在現實世界中。在此模擬,我們建立了一 個樣本材料,然後嘗試建造一個代表性的形象材料。若干假設是用於這一模擬實現一個更好的結果的目的。 | zh_TW |
| dc.description.abstract | Abstract
Optical Coherence Tomography (OCT) is a kind of microscopy method that has gained popularity nowadays. It is an optical signal acquisition and processing method that allowed an extremely high-quality, high resolution (micrometer scale), and ability to produce a three-dimensional images from within optical scattering media to be obtained. OCT is widely used in medical field especially in observing the biological tissue, although it is also can be used in photonics for a high precision measurement. Some of OCT advantages are high resolution and also deep penetration. The basic of OCT is interferometry. We use a low coherence light as the light source. Here we try to diagnose the light that is coming from the sample arm with the light from reference arm by using the principle of Michelson interferometer. The combination of reflected light from the sample arm and the reference arm will give rise to an interference pattern only if light from both arms have travelled in the same optical distance. It means that both will have the same optical path length. The real OCT simulation, however, has a limitation from the condition of the place and the material that is being observed. To simplify this problem, we try to simulate the OCT by using the Finite-Difference Time-Domain (FDTD) method. This simulation method allow us to construct a sample material that we need and made a scenario that is suitable for observing the material that is difficult in the real world. In this simulation, we build a sample material and then try to construct a representation of image of the material. Several assumptions are used for this simulation to achieve a better result in the end. Contents | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:40:56Z (GMT). No. of bitstreams: 1 ntu-98-J96921042-1.pdf: 1059724 bytes, checksum: 023d86e1ad8ab39c5761843a7c692ee7 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Contents
Acknowledgements 2 Abstract 3 Contents 4 Figure contents 6 Chapter 1 Introduction 9 1.1 Introduction of Optical Coherence Tomography 9 1.2 Working Principles of OCT 10 1.3 Content 13 Chapter 2 Basic of Optical Light Interaction and Microscopy Method 15 2.1 Introduction to Microscopy Method 15 2.2 Interference Phenomenon 19 2.3 Introduction of OCT Method 23 Chapter 3 FDTD Method 34 3.1 Introduction to FDTD Method 34 3.2 Courant Limit 44 3.3 Scattered-Field Total-Field 45 3.4 Absorbing Boundary Conditions and Perfectly Matched Layer 50 Chapter 4 Method and Experiment 57 4.1 Basic Scheme 57 4.2 Simulation Parameters 60 4.3 Simulation Scheme and Assumptions 64 4.4 Validation 66 4.5 Simulation Results 68 4.6 Summaries 95 Chapter 5 Conclusions and Future Works 97 5.1 Conclusions 97 5.2 Future Works 98 References 100 Figure contents Fig. 2-1 Bright-field microscopy……..……………………..………………………….16 Fig. 2-2 Dark-field Microscopy…………………..……..…………………………..….17 Fig. 2-3 Mathematical description of wave……………..……………………...……....20 Fig. 2-4 Diffraction phenomenon………………..……………………..……................21 Fig. 2-5 Thomas Young’s double-slit experiment...........................................................22 Fig. 2-6 Linear connection in interference phenomenon………………..…………..….23 Fig. 2-7 Michelson interferometer……………….…………………………...………...24 Fig. 2-8 Comparison between fully broadband, fully monochromatic, and low coherence light source….........................................................................................……...25 Fig. 2-9 Comparison between Confocal Microscopy, OCT, and Ultrasound….…….....26 Fig. 2-10 OCT system…………………………………..……………..…...…………...27 Fig. 2-11 Time Domain and Frequency Domain OCT….………….....…...…………...29 Fig. 2-12 FD-OCT with Spectrometer…………..…………...………..…...…………...31 Fig. 2-13 Frequency Domain OCT with swept laser.…...………………………….......31 Fig. 3-1 Yee Grid…………………………………………………...…………….…….36 Fig. 3-2 Leapfrog arrangement of FDTD………………………...…………………….37 Fig. 3-3 Description of the Scattered Field-Total Field…………...…............................46 Fig. 3-4 MATLAB simulation on SFTF..........................................................................47 Fig. 3-5 Illustration of PML............................................................................................53 Fig. 4-1 The system of OCT……………........................................................................57 Fig. 4-2 Cross sectional imaging & en face imaging......................................................58 Fig. 4-3 Sample of OCT image........................................................................................60 Fig. 4-4 Depth and intensity relation ……......................................................................63 Fig. 4-5 Simplified OCT system…..................................................................................64 Fig. 4-6 Simulation field for validation...........................................................................66 Fig. 4-7 Radar Cross Section (RCS) for FDTD code......................................................67 Fig. 4-8 Radar Cross Section (RCS) for Mie theory........................................................67 Fig. 4-9 Simulation field..................................................................................................68 Fig. 4-10 Simulation field for square structure................................................................70 Fig. 4-11 The detected Ez field as function of time.........................................................70 Fig. 4-12 The normalized intensity of Ez as function of time.........................................71 Fig. 4-13 Plot of intensity vs. time in square structure....................................................71 Fig. 4-14 Simulation field for bar structure.....................................................................72 Fig. 4-15 The detected Ez field as function of time…....................................................72 Fig. 4-16 The normalized intensity of Ez as function of time.........................................73 Fig. 4-17 Plot of intensity vs. time in bar structure.........................................................73 Fig. 4-18 Simulation field for triangle structure..............................................................74 Fig. 4-19 The detected Ez field as function of time........................................................74 Fig. 4-20 The normalized intensity of Ez as function of time.........................................75 Fig. 4-21 Plot of intensity vs. time in triangle structure..................................................75 Fig. 4-22 Simulation field for circle structure.................................................................76 Fig. 4-23 The detected Ez field as function of time........................................................76 Fig. 4-24 The normalized intensity of Ez as function of time.........................................77 Fig. 4-25 Plot of intensity vs. time in circle structure.....................................................77 Fig. 4-26 Material with bar shape in both horizontal and vertical direction...................81 Fig. 4-27 Normalized intensity on both bar shape material in horizontal and vertical direction............................................................................................................82 Fig. 4-28 The detected Ez field as function of time for 1st scenario................................84 Fig. 4-29 The normalized intensity of Ez as function of time for 1st scenario................84 Fig. 4-30 The detected Ez field as function of time for 2nd scenario...............................85 Fig. 4-31 The normalized intensity of Ez as function of time for 2nd scenario...............85 Fig. 4-32 The detected Ez field as function of time for 3rd scenario...............................86 Fig. 4-33 The normalized intensity of Ez as function of time for 3rd scenario................86 Fig. 4-34 The detected Ez field as function of time for 4th scenario...............................87 Fig. 4-35 The normalized intensity of Ez as function of time for 4th scenario................87 Fig. 4-36 Normalized intensities detected only from the front interface of the material..........................................................................................................89 Fig. 4-37 Normalized intensities detected from whole of the material...........................90 Fig. 4-38 Simulation field of 1st irregular structur...........................................................91 Fig. 4-39 The detected Ez field as function of time for 1st irregular structure................91 Fig. 4-40 Simulation field of 1st irregular structure.........................................................92 Fig. 4-41 The detected Ez field as function of time for 2nd irregular structure...............92 Fig. 4-42 Simulation field of 3rd irregular structure........................................................93 Fig. 4-43 The detected Ez field as function of time for 3rd irregular structure................93 Fig. 4-44 Simulation field of 4th irregular structure.........................................................94 Fig. 4-45 The detected Ez field as function of time for in 4th irregular structure............94 | |
| dc.language.iso | en | |
| dc.subject | 干擾 | zh_TW |
| dc.subject | 光學同調斷層掃描 | zh_TW |
| dc.subject | 時域有限差分 | zh_TW |
| dc.subject | Optical Coherence Tomogrpahy | en |
| dc.subject | Interference | en |
| dc.subject | FDTD | en |
| dc.title | 以時域有限差分法模擬光學同調斷層掃描 | zh_TW |
| dc.title | Simulation of Optical Coherence Tomography by Using Finite-Difference Time-Domain Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張世慧(Gilbert Chang),宋孔彬(Sung Kung-bin) | |
| dc.subject.keyword | 光學同調斷層掃描,時域有限差分,干擾, | zh_TW |
| dc.subject.keyword | Optical Coherence Tomogrpahy,Interference,FDTD, | en |
| dc.relation.page | 101 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
